論文の概要: The Moral Case for Using Language Model Agents for Recommendation
- arxiv url: http://arxiv.org/abs/2410.12123v2
- Date: Thu, 17 Oct 2024 22:06:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 10:25:40.039409
- Title: The Moral Case for Using Language Model Agents for Recommendation
- Title(参考訳): 言語モデルエージェントを推薦に用いたモラルケース
- Authors: Seth Lazar, Luke Thorburn, Tian Jin, Luca Belli,
- Abstract要約: 既存のレコメンデーターは、大量監視、集中力、狭い行動主義に陥り、ユーザーエージェンシーを侵害する。
自然言語で表現されたユーザの好みや値にマッチしたコンテンツのソースとキュレートには,言語モデル(LM)エージェントを使用します。
- 参考スコア(独自算出の注目度): 6.171497648710294
- License:
- Abstract: Our information and communication environment has fallen short of the ideals that networked global communication might have served. Identifying all the causes of its pathologies is difficult, but existing recommender systems very likely play a contributing role. In this paper, which draws on the normative tools of philosophy of computing, informed by empirical and technical insights from natural language processing and recommender systems, we make the moral case for an alternative approach. We argue that existing recommenders incentivise mass surveillance, concentrate power, fall prey to narrow behaviourism, and compromise user agency. Rather than just trying to avoid algorithms entirely, or to make incremental improvements to the current paradigm, researchers and engineers should explore an alternative paradigm: the use of language model (LM) agents to source and curate content that matches users' preferences and values, expressed in natural language. The use of LM agents for recommendation poses its own challenges, including those related to candidate generation, computational efficiency, preference modelling, and prompt injection. Nonetheless, if implemented successfully LM agents could: guide us through the digital public sphere without relying on mass surveillance; shift power away from platforms towards users; optimise for what matters instead of just for behavioural proxies; and scaffold our agency instead of undermining it.
- Abstract(参考訳): 我々の情報とコミュニケーション環境は、ネットワーク化されたグローバル通信が提供したであろう理想に欠けています。
病理のすべての原因を特定することは難しいが、既存のレコメンデーションシステムは貢献する役割を担っている可能性が高い。
本稿では,自然言語処理やレコメンデーションシステムから経験的および技術的知見を取り入れた,計算哲学の規範的ツールを基礎として,新たなアプローチのモラルを論じる。
既存のレコメンデーターは、大量監視、集中力、狭い行動主義に陥り、ユーザーエージェンシーを侵害する。
アルゴリズムを完全に回避したり、現在のパラダイムを漸進的に改善しようとするのではなく、言語モデル(LM)エージェントを使用して、自然言語で表現されたユーザの好みと価値観にマッチしたコンテンツをソースし、キュレートする、という代替パラダイムを探るべきである。
推奨のためのLMエージェントの使用は、候補生成、計算効率、選好モデリング、即時注入など、独自の課題を提起する。
それでも、LMエージェントがうまく実装できれば、大量監視に頼ることなく、デジタル公共空間を案内し、プラットフォームからユーザへとパワーをシフトし、行動プロキシだけでなく、何が重要なのかを最適化し、それを損なうのではなく、私たちのエージェンシーを足場にすることが可能になる。
関連論文リスト
- Recourse for reclamation: Chatting with generative language models [2.877217169371665]
生成言語モデルにアルゴリズム・リコースの概念を拡張します。
我々は,毒性フィルタリングのしきい値を動的に設定することで,希望する予測を実現する新しいメカニズムをユーザに提供する。
提案手法の可能性を実証したパイロット実験を行った。
論文 参考訳(メタデータ) (2024-03-21T15:14:25Z) - Bayesian Preference Elicitation with Language Models [82.58230273253939]
本稿では,BOEDを用いて情報的質問の選択を案内するフレームワークOPENと,特徴抽出のためのLMを紹介する。
ユーザスタディでは,OPEN が既存の LM- や BOED をベースとした選好手法よりも優れていることが判明した。
論文 参考訳(メタデータ) (2024-03-08T18:57:52Z) - Emerging Synergies Between Large Language Models and Machine Learning in
Ecommerce Recommendations [19.405233437533713]
大規模言語モデル(LLM)は、言語理解と生成の基本的なタスクにおいて優れた機能を持つ。
機能エンコーダとしてLLMを用いたユーザとアイテムの表現を学習するための代表的なアプローチを提案する。
次に、協調フィルタリング強化レコメンデーションシステムのためのLLM技術の最新技術について概説した。
論文 参考訳(メタデータ) (2024-03-05T08:31:00Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Recは、Large Language Modelsに基づいたレコメンデーションのユーザーシミュレータである。
各エージェントは、ページ単位でパーソナライズされた推奨モデルと対話する。
論文 参考訳(メタデータ) (2023-10-16T06:41:16Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - Language Agent Tree Search Unifies Reasoning Acting and Planning in Language Models [31.509994889286183]
我々はLanguage Agent Tree Search (LATS)を紹介した。Language Agent Tree Search (LATS)は、推論、行動、計画において言語モデル(LM)の能力を相乗化する最初の一般的なフレームワークである。
当社のアプローチの重要な特徴は、より意図的で適応的な問題解決メカニズムを提供する外部フィードバック環境の導入である。
LATSは、GPT-4でHumanEval上でプログラミングするための最先端パス@1精度(92.7%)を達成し、GPTによるWebShop上のWebナビゲーションの勾配ベースの微調整に匹敵する勾配なし性能(平均スコア75.9)を示す。
論文 参考訳(メタデータ) (2023-10-06T17:55:11Z) - Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization [103.70896967077294]
本稿では,レトロスペクティブモデルを学習することで,大規模言語エージェントを強化するための原則的枠組みを提案する。
提案するエージェントアーキテクチャは,事前学習した言語モデルを微調整するために,複数の環境やタスクにまたがる報酬から学習する。
様々なタスクの実験結果から、言語エージェントは時間とともに改善することが示された。
論文 参考訳(メタデータ) (2023-08-04T06:14:23Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。