論文の概要: Large Language Models, and LLM-Based Agents, Should Be Used to Enhance the Digital Public Sphere
- arxiv url: http://arxiv.org/abs/2410.12123v3
- Date: Wed, 02 Jul 2025 01:22:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:56.252995
- Title: Large Language Models, and LLM-Based Agents, Should Be Used to Enhance the Digital Public Sphere
- Title(参考訳): 大規模言語モデルとLLMベースのエージェントは、デジタル公開球の強化に使用すべきである
- Authors: Seth Lazar, Luke Thorburn, Tian Jin, Luca Belli,
- Abstract要約: 我々は、大規模言語モデルに基づくレコメンデータが、今日のアテンションアロケーション機械を置き換えることができると論じる。
オープンなWebコンテンツを取り込み、ユーザの自然なインジェクション目標を推測し、反射的嗜好と一致する情報を提示する。
- 参考スコア(独自算出の注目度): 6.171497648710294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper argues that large language model-based recommenders can displace today's attention-allocation machinery. LLM-based recommenders would ingest open-web content, infer a user's natural-language goals, and present information that matches their reflective preferences. Properly designed, they could deliver personalization without industrial-scale data hoarding, return control to individuals, optimize for genuine ends rather than click-through proxies, and support autonomous attention management. Synthesizing evidence of current systems' harms with recent work on LLM-driven pipelines, we identify four key research hurdles: generating candidates without centralized data, maintaining computational efficiency, modeling preferences robustly, and defending against prompt-injection. None looks prohibitive; surmounting them would steer the digital public sphere toward democratic, human-centered values.
- Abstract(参考訳): 本稿では,大規模言語モデルに基づくレコメンデータが,今日のアテンションアロケーション機構を置き換えることができることを論じる。
LLMベースのレコメンダは、オープンウェブコンテンツを取り込み、ユーザの自然言語の目標を推測し、反射的嗜好と一致する情報を提示する。
適切に設計されており、産業規模のデータ収集なしにパーソナライズを提供し、個人に制御を返却し、クリックスループロキシよりも真のエンドを最適化し、自律的な注意管理をサポートすることができる。
LLM駆動パイプラインに関する最近の研究で、現在のシステムの害の証拠を合成し、中央集権的なデータを持たない候補の生成、計算効率の維持、モデリングの好みの堅牢化、即時注入に対する防御の4つの主要な研究ハードルを特定した。
民主的、人間中心の価値観に向けて、デジタルの公共の領域を推し進めることは、誰も禁じられているようには見えない。
関連論文リスト
- Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Recourse for reclamation: Chatting with generative language models [2.877217169371665]
生成言語モデルにアルゴリズム・リコースの概念を拡張します。
我々は,毒性フィルタリングのしきい値を動的に設定することで,希望する予測を実現する新しいメカニズムをユーザに提供する。
提案手法の可能性を実証したパイロット実験を行った。
論文 参考訳(メタデータ) (2024-03-21T15:14:25Z) - Bayesian Preference Elicitation with Language Models [82.58230273253939]
本稿では,BOEDを用いて情報的質問の選択を案内するフレームワークOPENと,特徴抽出のためのLMを紹介する。
ユーザスタディでは,OPEN が既存の LM- や BOED をベースとした選好手法よりも優れていることが判明した。
論文 参考訳(メタデータ) (2024-03-08T18:57:52Z) - Emerging Synergies Between Large Language Models and Machine Learning in
Ecommerce Recommendations [19.405233437533713]
大規模言語モデル(LLM)は、言語理解と生成の基本的なタスクにおいて優れた機能を持つ。
機能エンコーダとしてLLMを用いたユーザとアイテムの表現を学習するための代表的なアプローチを提案する。
次に、協調フィルタリング強化レコメンデーションシステムのためのLLM技術の最新技術について概説した。
論文 参考訳(メタデータ) (2024-03-05T08:31:00Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Recは、Large Language Modelsに基づいたレコメンデーションのユーザーシミュレータである。
各エージェントは、ページ単位でパーソナライズされた推奨モデルと対話する。
論文 参考訳(メタデータ) (2023-10-16T06:41:16Z) - Language Agent Tree Search Unifies Reasoning Acting and Planning in Language Models [31.509994889286183]
我々はLanguage Agent Tree Search (LATS)を紹介した。Language Agent Tree Search (LATS)は、推論、行動、計画において言語モデル(LM)の能力を相乗化する最初の一般的なフレームワークである。
当社のアプローチの重要な特徴は、より意図的で適応的な問題解決メカニズムを提供する外部フィードバック環境の導入である。
LATSは、GPT-4でHumanEval上でプログラミングするための最先端パス@1精度(92.7%)を達成し、GPTによるWebShop上のWebナビゲーションの勾配ベースの微調整に匹敵する勾配なし性能(平均スコア75.9)を示す。
論文 参考訳(メタデータ) (2023-10-06T17:55:11Z) - Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization [103.70896967077294]
本稿では,レトロスペクティブモデルを学習することで,大規模言語エージェントを強化するための原則的枠組みを提案する。
提案するエージェントアーキテクチャは,事前学習した言語モデルを微調整するために,複数の環境やタスクにまたがる報酬から学習する。
様々なタスクの実験結果から、言語エージェントは時間とともに改善することが示された。
論文 参考訳(メタデータ) (2023-08-04T06:14:23Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。