Facing Identity: The Formation and Performance of Identity via Face-Based Artificial Intelligence Technologies
- URL: http://arxiv.org/abs/2410.12148v1
- Date: Wed, 16 Oct 2024 01:14:04 GMT
- Title: Facing Identity: The Formation and Performance of Identity via Face-Based Artificial Intelligence Technologies
- Authors: Wells Lucas Santo,
- Abstract summary: I propose that we are now in an era of "post-facial" technologies that build off our existing culture of facility while eschewing the analog face.
I conclude by proposing an interview study with VTubers -- online streamers who perform using motion-captured avatars instead of their real-life faces.
- Score: 0.0
- License:
- Abstract: How is identity constructed and performed in the digital via face-based artificial intelligence technologies? While questions of identity on the textual Internet have been thoroughly explored, the Internet has progressed to a multimedia form that not only centers the visual, but specifically the face. At the same time, a wealth of scholarship has and continues to center the topics of surveillance and control through facial recognition technologies (FRTs), which have extended the logics of the racist pseudoscience of physiognomy. Much less work has been devoted to understanding how such face-based artificial intelligence technologies have influenced the formation and performance of identity. This literature review considers how such technologies interact with faciality, which entails the construction of what a face may represent or signify, along axes of identity such as race, gender, and sexuality. In grappling with recent advances in AI such as image generation and deepfakes, I propose that we are now in an era of "post-facial" technologies that build off our existing culture of facility while eschewing the analog face, complicating our relationship with identity vis-a-vis the face. Drawing from previous frameworks of identity play in the digital, as well as trans practices that have historically played with or transgressed the boundaries of identity classification, we can develop concepts adequate for analyzing digital faciality and identity given the current landscape of post-facial artificial intelligence technologies that allow users to interface with the digital in an entirely novel manner. To ground this framework of transgression, I conclude by proposing an interview study with VTubers -- online streamers who perform using motion-captured avatars instead of their real-life faces -- to gain qualitative insight on how these sociotechnical experiences.
Related papers
- Adversarial Identity Injection for Semantic Face Image Synthesis [6.763801424109435]
We present an SIS architecture that exploits a cross-attention mechanism to merge identity, style, and semantic features to generate faces.
Experimental results reveal that the proposed method is not only suitable for preserving the identity but is also effective in the face recognition adversarial attack.
arXiv Detail & Related papers (2024-04-16T09:19:23Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - StableIdentity: Inserting Anybody into Anywhere at First Sight [57.99693188913382]
We propose StableIdentity, which allows identity-consistent recontextualization with just one face image.
We are the first to directly inject the identity learned from a single image into video/3D generation without finetuning.
arXiv Detail & Related papers (2024-01-29T09:06:15Z) - Identity-driven Three-Player Generative Adversarial Network for
Synthetic-based Face Recognition [14.73254194339562]
We present a three-player generative adversarial network (GAN) framework, namely IDnet, that enables the integration of identity information into the generation process.
We empirically proved that our IDnet synthetic images are of higher identity discrimination in comparison to the conventional two-player GAN.
We demonstrated the applicability of our IDnet data in training face recognition models by evaluating these models on a wide set of face recognition benchmarks.
arXiv Detail & Related papers (2023-04-30T00:04:27Z) - Digital and Physical Face Attacks: Reviewing and One Step Further [31.780516471483985]
Face presentation attacks (FPA) have raised pressing mistrust concerns.
Besides physical face attacks, face videos/images are vulnerable to a wide variety of digital attack techniques launched by malicious hackers.
This survey aims to build the integrity of face forensics by providing thorough analyses of existing literature and highlighting the issues requiring further attention.
arXiv Detail & Related papers (2022-09-29T11:25:52Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - I Only Have Eyes for You: The Impact of Masks On Convolutional-Based
Facial Expression Recognition [78.07239208222599]
We evaluate how the recently proposed FaceChannel adapts towards recognizing facial expressions from persons with masks.
We also perform specific feature-level visualization to demonstrate how the inherent capabilities of the FaceChannel to learn and combine facial features change when in a constrained social interaction scenario.
arXiv Detail & Related papers (2021-04-16T20:03:30Z) - IdentityDP: Differential Private Identification Protection for Face
Images [17.33916392050051]
Face de-identification, also known as face anonymization, refers to generating another image with similar appearance and the same background, while the real identity is hidden.
We propose IdentityDP, a face anonymization framework that combines a data-driven deep neural network with a differential privacy mechanism.
Our model can effectively obfuscate the identity-related information of faces, preserve significant visual similarity, and generate high-quality images.
arXiv Detail & Related papers (2021-03-02T14:26:00Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z) - An adversarial learning framework for preserving users' anonymity in
face-based emotion recognition [6.9581841997309475]
This paper proposes an adversarial learning framework which relies on a convolutional neural network (CNN) architecture trained through an iterative procedure.
Results indicate that the proposed approach can learn a convolutional transformation for preserving emotion recognition accuracy and degrading face identity recognition.
arXiv Detail & Related papers (2020-01-16T22:45:52Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
We audit ArcFace, a state-of-the-art, open source face recognition system, in a large-scale face identification experiment with more than one million distractor images.
We find a Rank-1 face identification accuracy of 79.71% for individuals present in the model's training data and an accuracy of 75.73% for those not present.
arXiv Detail & Related papers (2020-01-09T15:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.