論文の概要: Optimizing YOLOv5s Object Detection through Knowledge Distillation algorithm
- arxiv url: http://arxiv.org/abs/2410.12259v1
- Date: Wed, 16 Oct 2024 05:58:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:34.169484
- Title: Optimizing YOLOv5s Object Detection through Knowledge Distillation algorithm
- Title(参考訳): 知識蒸留アルゴリズムによるYOLOv5sオブジェクト検出の最適化
- Authors: Guanming Huang, Aoran Shen, Yuxiang Hu, Junliang Du, Jiacheng Hu, Yingbin Liang,
- Abstract要約: 本稿では, 目標検出作業における知識蒸留技術の応用について検討する。
教師ネットワークとしてYOLOv5l, 学生ネットワークとしてYOLOv5sを用いて, 蒸留温度の増加に伴い, 学生の検知精度は徐々に向上した。
- 参考スコア(独自算出の注目度): 37.37311465537091
- License:
- Abstract: This paper explores the application of knowledge distillation technology in target detection tasks, especially the impact of different distillation temperatures on the performance of student models. By using YOLOv5l as the teacher network and a smaller YOLOv5s as the student network, we found that with the increase of distillation temperature, the student's detection accuracy gradually improved, and finally achieved mAP50 and mAP50-95 indicators that were better than the original YOLOv5s model at a specific temperature. Experimental results show that appropriate knowledge distillation strategies can not only improve the accuracy of the model but also help improve the reliability and stability of the model in practical applications. This paper also records in detail the accuracy curve and loss function descent curve during the model training process and shows that the model converges to a stable state after 150 training cycles. These findings provide a theoretical basis and technical reference for further optimizing target detection algorithms.
- Abstract(参考訳): 本稿では, 目標検出作業における知識蒸留技術の応用, 特に学生モデルの性能に対する異なる蒸留温度の影響について検討する。
教師ネットワークとしてYOLOv5l, 学生ネットワークとしてYOLOv5sを用いて, 蒸留温度の上昇に伴い, 学生の検出精度は徐々に向上し, 最終的に, 元のYOLOv5sモデルよりも優れたmAP50およびmAP50-95指標を得た。
実験結果から, 適切な知識蒸留戦略はモデルの精度を向上させるだけでなく, モデルの信頼性や安定性を向上させる上でも有効であることがわかった。
本稿では,モデルのトレーニング過程における精度曲線と損失関数降下曲線を詳細に記録し,150回のトレーニングサイクル後にモデルを安定状態に収束させることを示す。
これらの知見は、ターゲット検出アルゴリズムをさらに最適化するための理論的基礎と技術的基準を提供する。
関連論文リスト
- Innovative Deep Learning Techniques for Obstacle Recognition: A Comparative Study of Modern Detection Algorithms [0.0]
本研究では,高度なYOLOモデル,特にYOLOv8,YOLOv7,YOLOv6,YOLOv5を用いた障害物検出の包括的アプローチについて検討する。
その結果, YOLOv8は精度が向上し, 精度が向上した。
論文 参考訳(メタデータ) (2024-10-14T02:28:03Z) - Temperature Balancing, Layer-wise Weight Analysis, and Neural Network
Training [58.20089993899729]
本稿では,直感的で効果的な階層学習手法であるTempBalanceを提案する。
我々は、TempBalanceが通常のSGDと注意深く調整されたスペクトルノルム正規化より著しく優れていることを示す。
また、TempBalanceは最先端のメトリクスやスケジューラよりも優れています。
論文 参考訳(メタデータ) (2023-12-01T05:38:17Z) - Comparative Analysis of Epileptic Seizure Prediction: Exploring Diverse
Pre-Processing Techniques and Machine Learning Models [0.0]
脳波データを用いたてんかん発作予測のための5つの機械学習モデルの比較分析を行った。
本分析の結果は,各モデルの性能を精度で示すものである。
ETモデルは99.29%の精度で最高の性能を示した。
論文 参考訳(メタデータ) (2023-08-06T08:50:08Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Towards a Smaller Student: Capacity Dynamic Distillation for Efficient
Image Retrieval [49.01637233471453]
従来の知識蒸留に基づく効率的な画像検索手法は,高速推論のための学生モデルとして軽量なネットワークを用いる。
本稿では,編集可能な表現能力を持つ学生モデルを構築するための容量動的蒸留フレームワークを提案する。
提案手法は,教師としてのResNet101を前提として,VeRi-776データセットなどの推論速度と精度が優れている。
論文 参考訳(メタデータ) (2023-03-16T11:09:22Z) - Channel Pruned YOLOv5-based Deep Learning Approach for Rapid and
Accurate Outdoor Obstacles Detection [6.703770367794502]
1段階のアルゴリズムは、大量のデータをトレーニングする必要があるターゲット検出システムで広く使われている。
畳み込み構造のため、より多くの計算能力とメモリ消費が必要である。
対象検出ネットワークにプルーニング戦略を適用し,パラメータ数とモデルサイズを削減した。
論文 参考訳(メタデータ) (2022-04-27T21:06:04Z) - LTD: Low Temperature Distillation for Robust Adversarial Training [1.3300217947936062]
敵の訓練は、敵の攻撃に対するニューラルネットワークモデルの堅牢性を高めるために広く使用されている。
ニューラルネットワークモデルの人気にもかかわらず、これらのモデルの自然な精度とロバストな精度の間には大きなギャップがある。
改良された知識蒸留フレームワークを用いてソフトラベルを生成する,低温蒸留(LTD)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-03T16:26:00Z) - Beyond Self-Supervision: A Simple Yet Effective Network Distillation
Alternative to Improve Backbones [40.33419553042038]
既製のトレーニング済み大型モデルからナレッジ蒸留による既存ベースラインネットワークの改善を提案します。
本ソリューションは,教師モデルと整合した学生モデルの予測のみを駆動することにより,蒸留を行う。
例えば、MobileNetV3-large と ResNet50-D の ImageNet-1k 検証セットにおけるトップ-1 の精度は、大幅に向上できる。
論文 参考訳(メタデータ) (2021-03-10T09:32:44Z) - Autoregressive Knowledge Distillation through Imitation Learning [70.12862707908769]
我々は,知識蒸留における模倣学習の観点から駆動される自己回帰モデルに対する圧縮手法を開発した。
本手法は,シーケンスレベルの知識蒸留など,他の蒸留アルゴリズムより一貫して優れている。
また,本手法を訓練した学生は,スクラッチからトレーニングした生徒よりも1.4~4.8BLEU/ROUGEポイント高く,教師モデルと比較して推論速度を最大14倍に向上させた。
論文 参考訳(メタデータ) (2020-09-15T17:43:02Z) - Distilling Object Detectors with Task Adaptive Regularization [97.52935611385179]
現在の最先端のオブジェクト検出器は高い計算コストを犠牲にしており、ローエンドデバイスへのデプロイが困難である。
より大規模な教師モデルから知識を伝達することで、より小さな学生ネットワークを訓練することを目的とした知識蒸留は、モデル小型化のための有望な解決策の1つである。
論文 参考訳(メタデータ) (2020-06-23T15:58:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。