論文の概要: Continuous Pupillography: A Case for Visual Health Ecosystem
- arxiv url: http://arxiv.org/abs/2410.12303v1
- Date: Wed, 16 Oct 2024 07:05:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:44:36.121849
- Title: Continuous Pupillography: A Case for Visual Health Ecosystem
- Title(参考訳): 連続乳頭撮影 : 視覚健康生態系の1例
- Authors: Usama Younus, Nirupam Roy,
- Abstract要約: 本稿では, 眼科領域における眼科診断の応用の可能性について紹介する。
私たちは、継続的な視線モニタリングを中心に展開する健康エコシステムのケースを作ろうとしています。
- 参考スコア(独自算出の注目度): 0.15193212081459279
- License:
- Abstract: This article aims to cover pupillography, and its potential use in a number of ophthalmological diagnostic applications in biomedical space. With the ever-increasing incorporation of technology within our daily lives and an ever-growing active research into smart devices and technologies, we try to make a case for a health ecosystem that revolves around continuous eye monitoring. We tend to summarize the design constraints & requirements for an IoT-based continuous pupil detection system, with an attempt at developing a pipeline for wearable pupillographic device, while comparing two compact mini-camera modules currently available in the market. We use a light algorithm that can be directly adopted to current micro-controllers, and share our results for different lighting conditions, and scenarios. Lastly, we present our findings, along with an analysis on the challenges faced and a way ahead towards successfully building this ecosystem.
- Abstract(参考訳): 本稿では, 眼科領域における眼科診断の応用の可能性について紹介する。
日々の生活にテクノロジーが組み入れられるようになり、スマートデバイスやテクノロジーに関する継続的な研究が盛んになる中、私たちは、継続的な視線モニタリングにまつわる健康エコシステムのケースを作ろうとしています。
我々は、IoTベースの連続瞳孔検出システムの設計制約と要件を要約し、現在市場に出回っている2つの小型カメラモジュールを比較しながら、ウェアラブル瞳孔装置用のパイプラインの開発を試みる傾向にある。
我々は、現在のマイクロコントローラに直接適用可能な光アルゴリズムを使用し、異なる照明条件やシナリオについて結果を共有する。
最後に、我々は、直面した課題の分析と、このエコシステムの構築に成功するための道のりを提示する。
関連論文リスト
- ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
研究結果を複製するという課題は、分子生物学の分野に重大な障害をもたらしている。
まず、この目的に向けた最初のステップとして、ProBioという名前の包括的なマルチモーダルデータセットをキュレートする。
次に、透明なソリューショントラッキングとマルチモーダルなアクション認識という2つの挑戦的なベンチマークを考案し、BioLab設定におけるアクティビティ理解に関連する特徴と難しさを強調した。
論文 参考訳(メタデータ) (2023-11-01T14:44:01Z) - Remote Bio-Sensing: Open Source Benchmark Framework for Fair Evaluation
of rPPG [2.82697733014759]
r(pg photoplethysmography)は、カメラで捉えたヘモグロビンの光吸収特性を用いてBVP(Blood Volume Pulse)を測定し、分析する技術である。
本研究は,多種多様なデータセットを対象とした様々なrベンチマーク手法の評価を行い,妥当性評価と比較を行うためのフレームワークを提供することを目的とする。
論文 参考訳(メタデータ) (2023-07-24T09:35:47Z) - HEAR4Health: A blueprint for making computer audition a staple of modern
healthcare [89.8799665638295]
近年、従来の医療システムを変革する試みとして、デジタル医療の研究が急速に増加している。
コンピュータによるオーディションは、少なくとも商業的関心の面では遅れている。
実生活における聴覚信号の分析に必要な基礎技術に対応する聴覚、計算とデータ効率の進歩、個々の差異を考慮し、医療データの長手性を扱う聴覚。
論文 参考訳(メタデータ) (2023-01-25T09:25:08Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Low-Power Hardware-Based Deep-Learning Diagnostics Support Case Study [6.011991689754301]
本稿では,PoCケーススタディのための顕微鏡診断支援システムの組み込みハードウェアによる実装を提案する。
我々はSqueeze-Netベースのモデルを用いてネットワークのサイズと時間を短縮する。
また,学習モデルのメモリフットプリントをさらに削減するために,トレーニング量子化技術を利用する。
論文 参考訳(メタデータ) (2022-09-03T22:41:52Z) - A Deep Learning Approach for the Segmentation of Electroencephalography
Data in Eye Tracking Applications [56.458448869572294]
脳波データの時系列セグメンテーションのための新しいフレームワークDETRtimeを紹介する。
エンドツーエンドのディープラーニングベースのフレームワークは、コンピュータビジョンの進歩を前面に立たせています。
我々のモデルは脳波睡眠ステージセグメンテーションのタスクにおいてよく一般化される。
論文 参考訳(メタデータ) (2022-06-17T10:17:24Z) - Camera-Based Physiological Sensing: Challenges and Future Directions [5.571184025017747]
我々は、カメラベースの生理学的センシングとより広範なAI駆動型医療コミュニティの分野における4つの研究課題を特定した。
これらの課題を解決することで、医療に正確で公平で汎用的なAIシステムを提供できると信じています。
論文 参考訳(メタデータ) (2021-10-26T02:30:18Z) - Ultrafast Focus Detection for Automated Microscopy [0.0]
連続的に収集した電子顕微鏡画像に対する高速な焦点検出アルゴリズムを提案する。
本手法は, 従来のコンピュータビジョン技術に適応し, 様々な微細な組織学的特徴を検出する手法である。
アウト・オブ・フォーカス条件をほぼリアルタイムに検出するテストが実施されている。
論文 参考訳(メタデータ) (2021-08-26T22:24:41Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。