Optimizing Low-Resource Language Model Training: Comprehensive Analysis of Multi-Epoch, Multi-Lingual, and Two-Stage Approaches
- URL: http://arxiv.org/abs/2410.12325v1
- Date: Wed, 16 Oct 2024 07:45:56 GMT
- Title: Optimizing Low-Resource Language Model Training: Comprehensive Analysis of Multi-Epoch, Multi-Lingual, and Two-Stage Approaches
- Authors: Kosuke Akimoto, Masafumi Oyamada,
- Abstract summary: Existing works adopt multi-epoch, multi-lingual, and two-stage training to utilize the limited target language corpus efficiently.
We exhaustively explore training setups for low-resource language LLM, combining these three approaches.
As the amount of target language corpus decreases, the optimal training approach shifts from monolingual single-stage training to multi-lingual two-stage training at a compute budget dependent threshold.
- Score: 3.809045695573932
- License:
- Abstract: In this paper, we address the challenge of optimizing training setups for Large Language Models (LLMs) of low-resource language with a limited amount of corpus. Existing works adopt multi-epoch, multi-lingual, and two-stage training to utilize the limited target language corpus efficiently. However, there is still a lack of understanding about the optimal hyperparameter setups for combining these three approaches to train LLMs. We exhaustively explore training setups for low-resource language LLM, combining these three approaches, and found the following insights for efficiently reducing the cost of hyperparameter search: (1) As the amount of target language corpus decreases, the optimal training approach shifts from monolingual single-stage training to multi-lingual two-stage training at a compute budget dependent threshold. (2) The optimal model scale remains stable regardless of the amount of target language corpus, allowing the use of the compute-optimal scale of monolingual training. (3) The optimal number of epochs can be extrapolated from smaller-scale experiments to larger scale using our proposed model. Also, we provide evidence that, in single-stage training, the target language validation loss follows a power law with respect to the target language ratio, with an exponent independent of the amount of data, model scale, and language pair.
Related papers
- Scaling Laws for Multilingual Language Models [41.6318470003173]
A primary challenge in studying multilingual scaling is the difficulty of analyzing individual language performance due to cross-lingual transfer.
We introduce and validate a hypothesis that the test cross-entropy loss for each language family is determined solely by its own sampling ratio.
We derive a power-law relationship that links performance with dataset size, model size and sampling ratios.
arXiv Detail & Related papers (2024-10-15T20:29:38Z) - Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation [70.22782550540714]
Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
We introduce a Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
arXiv Detail & Related papers (2024-08-07T12:42:09Z) - Targeted Multilingual Adaptation for Low-resource Language Families [17.212424929235624]
We study best practices for adapting a pre-trained model to a language family.
Our adapted models significantly outperform mono- and multilingual baselines.
Low-resource languages can be aggressively up-sampled during training at little detriment to performance in high-resource languages.
arXiv Detail & Related papers (2024-05-20T23:38:06Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
Supervised fine-tuning (SFT), supervised instruction tuning (SIT) and in-context learning (ICL) are three alternative, de facto standard approaches to few-shot learning.
We present an extensive and systematic comparison of the three approaches, testing them on 6 high- and low-resource languages, three different NLU tasks, and a myriad of language and domain setups.
Our observations show that supervised instruction tuning has the best trade-off between performance and resource requirements.
arXiv Detail & Related papers (2024-03-04T10:48:13Z) - High-resource Language-specific Training for Multilingual Neural Machine
Translation [109.31892935605192]
We propose the multilingual translation model with the high-resource language-specific training (HLT-MT) to alleviate the negative interference.
Specifically, we first train the multilingual model only with the high-resource pairs and select the language-specific modules at the top of the decoder.
HLT-MT is further trained on all available corpora to transfer knowledge from high-resource languages to low-resource languages.
arXiv Detail & Related papers (2022-07-11T14:33:13Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
We propose a new learning objective for Multilingual neural machine translation (MNMT) based on distributionally robust optimization.
We show how to practically optimize this objective for large translation corpora using an iterated best response scheme.
Our method consistently outperforms strong baseline methods in terms of average and per-language performance under both many-to-one and one-to-many translation settings.
arXiv Detail & Related papers (2021-09-09T03:48:35Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z) - Balancing Training for Multilingual Neural Machine Translation [130.54253367251738]
multilingual machine translation (MT) models can translate to/from multiple languages.
Standard practice is to up-sample less resourced languages to increase representation.
We propose a method that instead automatically learns how to weight training data through a data scorer.
arXiv Detail & Related papers (2020-04-14T18:23:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.