Machine Mindset: An MBTI Exploration of Large Language Models
- URL: http://arxiv.org/abs/2312.12999v4
- Date: Sun, 2 Jun 2024 03:57:06 GMT
- Title: Machine Mindset: An MBTI Exploration of Large Language Models
- Authors: Jiaxi Cui, Liuzhenghao Lv, Jing Wen, Rongsheng Wang, Jing Tang, YongHong Tian, Li Yuan,
- Abstract summary: We present a novel approach for integrating Myers-Briggs Type Indicator (MBTI) personality traits into large language models (LLMs)
Our method, "Machine Mindset," involves a two-phase fine-tuning and Direct Preference Optimization (DPO) to embed MBTI traits into LLMs.
- Score: 28.2342069623478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach for integrating Myers-Briggs Type Indicator (MBTI) personality traits into large language models (LLMs), addressing the challenges of personality consistency in personalized AI. Our method, "Machine Mindset," involves a two-phase fine-tuning and Direct Preference Optimization (DPO) to embed MBTI traits into LLMs. This approach ensures that models internalize these traits, offering a stable and consistent personality profile. We demonstrate the effectiveness of our models across various domains, showing alignment between model performance and their respective MBTI traits. The paper highlights significant contributions in the development of personality datasets and a new training methodology for personality integration in LLMs, enhancing the potential for personalized AI applications. We also open-sourced our model and part of the data at \url{https://github.com/PKU-YuanGroup/Machine-Mindset}.
Related papers
- MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
Large Language Models (LLMs) acquire extensive knowledge and remarkable abilities from extensive text corpora.
To make LLMs more usable, aligning them with human preferences is essential.
We propose an effective method, textbf MetaAlign, which aims to help LLMs dynamically align with various explicit or implicit preferences specified at inference time.
arXiv Detail & Related papers (2024-10-18T05:31:13Z) - Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
Large language models (LLMs) have become increasingly proficient at simulating various personality traits.
We present a neuron-based approach for personality trait induction in LLMs.
arXiv Detail & Related papers (2024-10-16T07:47:45Z) - Personality Alignment of Large Language Models [26.071445846818914]
Current methods for aligning large language models (LLMs) typically aim to reflect general human values and behaviors.
We introduce the concept of Personality Alignment.
This approach tailors LLMs' responses and decisions to match the specific preferences of individual users or closely related groups.
arXiv Detail & Related papers (2024-08-21T17:09:00Z) - Continuous Output Personality Detection Models via Mixed Strategy Training [27.152245569974678]
This paper presents a novel approach for training personality detection models that produce continuous output values.
By leveraging the PANDORA dataset, which includes extensive personality labeling of Reddit comments, we developed models that predict the Big Five personality traits with high accuracy.
arXiv Detail & Related papers (2024-06-23T21:32:15Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
Personality detection aims to detect one's personality traits underlying in social media posts.
Most existing methods learn post features directly by fine-tuning the pre-trained language models.
We propose a large language model (LLM) based text augmentation enhanced personality detection model.
arXiv Detail & Related papers (2024-03-12T12:10:18Z) - SelectIT: Selective Instruction Tuning for Large Language Models via
Uncertainty-Aware Self-Reflection [49.54657248221432]
In this work, we propose a novel approach, termed SelectIT, that capitalizes on the foundational capabilities of the large language models (LLMs)
Specifically, we exploit the intrinsic uncertainty present in LLMs to more effectively select high-quality IT data, without the need for extra resources.
Empirical results demonstrate that IT using Selective Alpaca leads to substantial model ability enhancement.
arXiv Detail & Related papers (2024-02-26T16:21:53Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Pushing on Personality Detection from Verbal Behavior: A Transformer
Meets Text Contours of Psycholinguistic Features [27.799032561722893]
We report two major improvements in predicting personality traits from text data.
We integrate a pre-trained Transformer Language Model BERT and Bidirectional Long Short-Term Memory networks trained on within-text distributions of psycholinguistic features.
We evaluate the performance of the models we built on two benchmark datasets.
arXiv Detail & Related papers (2022-04-10T08:08:46Z) - Multitask Learning for Emotion and Personality Detection [17.029426018676997]
We build on the known correlation between personality traits and emotional behaviors, and propose a novel multitask learning framework, SoGMTL.
Our more computationally efficient CNN-based multitask model achieves the state-of-the-art performance across multiple famous personality and emotion datasets.
arXiv Detail & Related papers (2021-01-07T03:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.