Federated Temporal Graph Clustering
- URL: http://arxiv.org/abs/2410.12343v1
- Date: Wed, 16 Oct 2024 08:04:57 GMT
- Title: Federated Temporal Graph Clustering
- Authors: Yang Liu, Zihao Zhou, Xianghong Xu, Qian Li,
- Abstract summary: Temporal graph clustering is a complex task that involves discovering meaningful structures in dynamic graphs where relationships and entities change over time.
Existing methods typically require centralized data collection, which poses significant privacy and communication challenges.
We introduce a novel Federated Temporal Graph Clustering framework that enables decentralized training of graph neural networks (GNNs) across multiple clients.
- Score: 9.779760673367663
- License:
- Abstract: Temporal graph clustering is a complex task that involves discovering meaningful structures in dynamic graphs where relationships and entities change over time. Existing methods typically require centralized data collection, which poses significant privacy and communication challenges. In this work, we introduce a novel Federated Temporal Graph Clustering (FTGC) framework that enables decentralized training of graph neural networks (GNNs) across multiple clients, ensuring data privacy throughout the process. Our approach incorporates a temporal aggregation mechanism to effectively capture the evolution of graph structures over time and a federated optimization strategy to collaboratively learn high-quality clustering representations. By preserving data privacy and reducing communication overhead, our framework achieves competitive performance on temporal graph datasets, making it a promising solution for privacy-sensitive, real-world applications involving dynamic data.
Related papers
- Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
We propose a novel deep graph clustering method called CGCN.
Our approach introduces contrastive signals and deep structural information into the pre-training process.
Our method has been experimentally validated on multiple real-world graph datasets.
arXiv Detail & Related papers (2024-08-08T09:49:26Z) - Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
Composite Node Message Passing Network (CoNo-Link) is a framework for modeling ultra-long frames information for association.
In addition to the previous method of treating objects as nodes, the network innovatively treats object trajectories as nodes for information interaction.
Our model can learn better predictions on longer-time scales by adding composite nodes.
arXiv Detail & Related papers (2023-12-14T14:00:30Z) - Privacy-preserving design of graph neural networks with applications to
vertical federated learning [56.74455367682945]
We present an end-to-end graph representation learning framework called VESPER.
VESPER is capable of training high-performance GNN models over both sparse and dense graphs under reasonable privacy budgets.
arXiv Detail & Related papers (2023-10-31T15:34:59Z) - FedGKD: Unleashing the Power of Collaboration in Federated Graph Neural
Networks [40.5420021584431]
Federated training of Graph Neural Networks (GNN) has become popular in recent years due to its ability to perform graph-related tasks under data isolation scenarios.
graph heterogeneity issues in federated GNN systems continue to pose challenges.
We propose FedGKD, a novel federated GNN framework that utilizes a novel client-side graph dataset distillation method.
arXiv Detail & Related papers (2023-09-18T06:55:14Z) - Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
We propose a novel self-supervised deep graph clustering method named Redundancy-Free Graph Clustering (R$2$FGC)
It extracts the attribute- and structure-level relational information from both global and local views based on an autoencoder and a graph autoencoder.
Our experiments are performed on widely used benchmark datasets to validate the superiority of our R$2$FGC over state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-09T06:18:50Z) - Unified and Dynamic Graph for Temporal Character Grouping in Long Videos [31.192044026127032]
Video temporal character grouping locates appearing moments of major characters within a video according to their identities.
Recent works have evolved from unsupervised clustering to graph-based supervised clustering.
We present a unified and dynamic graph (UniDG) framework for temporal character grouping.
arXiv Detail & Related papers (2023-08-27T13:22:55Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
Existing works merely view a dynamic graph as a sequence of changes.
We formulate dynamic graphs as temporal edge sequences associated with joining time of.
vertex and timespan of edges.
A time-aware Transformer is proposed to embed.
vertex' dynamic connections and ToEs into the learned.
vertex representations.
arXiv Detail & Related papers (2022-07-01T15:32:56Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.