Towards Neural Scaling Laws for Time Series Foundation Models
- URL: http://arxiv.org/abs/2410.12360v1
- Date: Wed, 16 Oct 2024 08:23:39 GMT
- Title: Towards Neural Scaling Laws for Time Series Foundation Models
- Authors: Qingren Yao, Chao-Han Huck Yang, Renhe Jiang, Yuxuan Liang, Ming Jin, Shirui Pan,
- Abstract summary: We examine two common TSFM architectures, encoder-only and decoder-only Transformers, and investigate their scaling behavior on both ID and OOD data.
Our experiments reveal that the log-likelihood loss of TSFMs exhibits similar scaling behavior in both OOD and ID settings.
We provide practical guidelines for designing and scaling larger TSFMs with enhanced model capabilities.
- Score: 63.5211738245487
- License:
- Abstract: Scaling laws offer valuable insights into the design of time series foundation models (TSFMs). However, previous research has largely focused on the scaling laws of TSFMs for in-distribution (ID) data, leaving their out-of-distribution (OOD) scaling behavior and the influence of model architectures less explored. In this work, we examine two common TSFM architectures, encoder-only and decoder-only Transformers, and investigate their scaling behavior on both ID and OOD data. These models are trained and evaluated across varying parameter counts, compute budgets, and dataset sizes. Our experiments reveal that the log-likelihood loss of TSFMs exhibits similar scaling behavior in both OOD and ID settings. We further compare the scaling properties across different architectures, incorporating two state-of-the-art TSFMs as case studies, showing that model architecture plays a significant role in scaling. The encoder-only Transformers demonstrate better scalability than the decoder-only Transformers, while the architectural enhancements in the two advanced TSFMs primarily improve ID performance but reduce OOD scalability. While scaling up TSFMs is expected to drive performance breakthroughs, the lack of a comprehensive understanding of TSFM scaling laws has hindered the development of a robust framework to guide model scaling. We fill this gap in this work by synthesizing our findings and providing practical guidelines for designing and scaling larger TSFMs with enhanced model capabilities.
Related papers
- Efficient and Effective Adaptation of Multimodal Foundation Models in Sequential Recommendation [43.524099888917384]
IISAN was limited to symmetrical MFMs and identical text and image encoders, preventing the use of state-of-the-art Large Language Models.
We developed IISAN-Versa, a versatile plug-and-play architecture compatible with both symmetrical and asymmetrical MFMs.
IISAN-Versa effectively adapts large text encoders, and we further identify a scaling effect where larger encoders generally perform better.
arXiv Detail & Related papers (2024-11-05T10:53:25Z) - Research on Personalized Compression Algorithm for Pre-trained Models Based on Homomorphic Entropy Increase [2.6513322539118582]
We explore the challenges and evolution of two key technologies in the current field of AI: Vision Transformer model and Large Language Model (LLM)
Vision Transformer captures global information by splitting images into small pieces, but its high reference count and compute overhead limit deployment on mobile devices.
LLM has revolutionized natural language processing, but it also faces huge deployment challenges.
arXiv Detail & Related papers (2024-08-16T11:56:49Z) - Zero-Shot Embeddings Inform Learning and Forgetting with Vision-Language Encoders [6.7181844004432385]
The Inter-Intra Modal Measure (IIMM) functions as a strong predictor of performance changes with fine-tuning.
Fine-tuning on tasks with higher IIMM scores produces greater in-domain performance gains but also induces more severe out-of-domain performance degradation.
With only a single forward pass of the target data, practitioners can leverage this key insight to evaluate the degree to which a model can be expected to improve following fine-tuning.
arXiv Detail & Related papers (2024-07-22T15:35:09Z) - Towards smaller, faster decoder-only transformers: Architectural variants and their implications [0.0]
We introduce three modifications to the decoder-only transformer architecture, namely ParallelGPT, LinearGPT, and ConvGPT.
These variants demonstrate comparable performance to the conventional architecture in language generation, yet benefit from reduced model sizes and faster training processes.
arXiv Detail & Related papers (2024-04-22T06:19:46Z) - Fine-Tuning Enhances Existing Mechanisms: A Case Study on Entity
Tracking [53.66999416757543]
We study how fine-tuning affects the internal mechanisms implemented in language models.
Fine-tuning enhances, rather than alters, the mechanistic operation of the model.
arXiv Detail & Related papers (2024-02-22T18:59:24Z) - Diffusion Models Without Attention [110.5623058129782]
Diffusion State Space Model (DiffuSSM) is an architecture that supplants attention mechanisms with a more scalable state space model backbone.
Our focus on FLOP-efficient architectures in diffusion training marks a significant step forward.
arXiv Detail & Related papers (2023-11-30T05:15:35Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
This study presents a groundbreaking model for forecasting long-term financial time series, termed the Enhanced LFTSformer.
The model distinguishes itself through several significant innovations.
Systematic experimentation on a range of benchmark stock market datasets demonstrates that the Enhanced LFTSformer outperforms traditional machine learning models.
arXiv Detail & Related papers (2023-10-03T08:37:21Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
We propose the Structure Information Modeling Transformer (SIM-Trans) to incorporate object structure information into transformer for enhancing discriminative representation learning.
The proposed two modules are light-weighted and can be plugged into any transformer network and trained end-to-end easily.
Experiments and analyses demonstrate that the proposed SIM-Trans achieves state-of-the-art performance on fine-grained visual categorization benchmarks.
arXiv Detail & Related papers (2022-08-31T03:00:07Z) - Data Scaling Laws in NMT: The Effect of Noise and Architecture [59.767899982937756]
We study the effect of varying the architecture and training data quality on the data scaling properties of Neural Machine Translation (NMT)
We find that the data scaling exponents are minimally impacted, suggesting that marginally worse architectures or training data can be compensated for by adding more data.
arXiv Detail & Related papers (2022-02-04T06:53:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.