Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution
- URL: http://arxiv.org/abs/2506.11823v1
- Date: Fri, 13 Jun 2025 14:29:40 GMT
- Title: Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution
- Authors: Zhangkai Ni, Yang Zhang, Wenhan Yang, Hanli Wang, Shiqi Wang, Sam Kwong,
- Abstract summary: We propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR.<n>This method is designed through unfolding an SR optimization function constrained by structural similarity.<n>Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption.
- Score: 88.20464308588889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU
Related papers
- LeMoRe: Learn More Details for Lightweight Semantic Segmentation [48.81126061219231]
We introduce an efficient paradigm by synergizing explicit and implicit modeling to balance computational efficiency with representational fidelity.<n>Our method combines well-defined Cartesian directions with explicitly modeled views and implicitly inferred intermediate representations, efficiently capturing global dependencies.
arXiv Detail & Related papers (2025-05-29T04:55:10Z) - DiMoSR: Feature Modulation via Multi-Branch Dilated Convolutions for Efficient Image Super-Resolution [7.714092783675679]
This paper introduces DiMoSR, a novel architecture that enhances feature representation through modulation to complement attention in lightweight SISR networks.<n> Experimental results demonstrate that DiMoSR outperforms state-of-the-art lightweight methods across diverse benchmark datasets.
arXiv Detail & Related papers (2025-05-27T14:40:05Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - A-SDM: Accelerating Stable Diffusion through Model Assembly and Feature Inheritance Strategies [51.7643024367548]
Stable Diffusion Model is a prevalent and effective model for text-to-image (T2I) and image-to-image (I2I) generation.
This study focuses on reducing redundant computation in SDM and optimizing the model through both tuning and tuning-free methods.
arXiv Detail & Related papers (2024-05-31T21:47:05Z) - Majority Kernels: An Approach to Leverage Big Model Dynamics for Efficient Small Model Training [32.154166415680066]
Methods like distillation, compression or quantization help leverage the highly performant large models to induce smaller performant ones.
This paper explores the hypothesis that a single training run can simultaneously train a larger model for performance and derive a smaller model for deployment.
arXiv Detail & Related papers (2024-02-07T17:07:41Z) - A Lightweight Feature Fusion Architecture For Resource-Constrained Crowd
Counting [3.5066463427087777]
We introduce two lightweight models to enhance the versatility of crowd-counting models.
These models maintain the same downstream architecture while incorporating two distinct backbones: MobileNet and MobileViT.
We leverage Adjacent Feature Fusion to extract diverse scale features from a Pre-Trained Model (PTM) and subsequently combine these features seamlessly.
arXiv Detail & Related papers (2024-01-11T15:13:31Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
We present and advocate an explainable approach toward SISR named model-guided deep unfolding network (MoG-DUN)
MoG-DUN is accurate (producing fewer aliasing artifacts), computationally efficient (with reduced model parameters), and versatile (capable of handling multiple degradations)
The superiority of the proposed MoG-DUN method to existing state-of-theart image methods including RCAN, SRDNF, and SRFBN is substantiated by extensive experiments on several popular datasets and various degradation scenarios.
arXiv Detail & Related papers (2020-09-14T08:23:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.