HerO at AVeriTeC: The Herd of Open Large Language Models for Verifying Real-World Claims
- URL: http://arxiv.org/abs/2410.12377v2
- Date: Sun, 20 Oct 2024 06:57:50 GMT
- Title: HerO at AVeriTeC: The Herd of Open Large Language Models for Verifying Real-World Claims
- Authors: Yejun Yoon, Jaeyoon Jung, Seunghyun Yoon, Kunwoo Park,
- Abstract summary: We introduce a system that only employs publicly available large language models (LLMs) for each step of automated fact-checking.
For evidence retrieval, a language model is used to enhance a query by generating hypothetical fact-checking documents.
HerO achieved 2nd place on the leaderboard with the AVeriTeC score of 0.57, suggesting the potential of open LLMs for verifying real-world claims.
- Score: 6.792233590302494
- License:
- Abstract: To tackle the AVeriTeC shared task hosted by the FEVER-24, we introduce a system that only employs publicly available large language models (LLMs) for each step of automated fact-checking, dubbed the Herd of Open LLMs for verifying real-world claims (HerO). For evidence retrieval, a language model is used to enhance a query by generating hypothetical fact-checking documents. We prompt pretrained and fine-tuned LLMs for question generation and veracity prediction by crafting prompts with retrieved in-context samples. HerO achieved 2nd place on the leaderboard with the AVeriTeC score of 0.57, suggesting the potential of open LLMs for verifying real-world claims. For future research, we make our code publicly available at https://github.com/ssu-humane/HerO.
Related papers
- WikiContradict: A Benchmark for Evaluating LLMs on Real-World Knowledge Conflicts from Wikipedia [59.96425443250666]
Retrieval-augmented generation (RAG) has emerged as a promising solution to mitigate the limitations of large language models (LLMs)
In this work, we conduct a comprehensive evaluation of LLM-generated answers to questions based on contradictory passages from Wikipedia.
We benchmark a diverse range of both closed and open-source LLMs under different QA scenarios, including RAG with a single passage, and RAG with 2 contradictory passages.
arXiv Detail & Related papers (2024-06-19T20:13:42Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
We introduce a novel method for attribution in contextual question answering, leveraging the hidden state representations of large language models (LLMs)
Our approach bypasses the need for extensive model retraining and retrieval model overhead, offering granular attributions and preserving the quality of generated answers.
We present Verifiability-granular, an attribution dataset which has token level annotations for LLM generations in the contextual question answering setup.
arXiv Detail & Related papers (2024-05-28T09:12:44Z) - Effective Large Language Model Adaptation for Improved Grounding and Citation Generation [48.07830615309543]
This paper focuses on improving large language models (LLMs) by grounding their responses in retrieved passages and by providing citations.
We propose a new framework, AGREE, that improves the grounding from a holistic perspective.
Our framework tunes LLMs to selfground the claims in their responses and provide accurate citations to retrieved documents.
arXiv Detail & Related papers (2023-11-16T03:22:25Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
Recent large language models (LLM) are leveraging human feedback to improve their generation quality.
We propose LLMRefine, an inference time optimization method to refine LLM's output.
We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization.
LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
arXiv Detail & Related papers (2023-11-15T19:52:11Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
Verifiable generation aims to let the large language model (LLM) generate text with supporting documents.
We propose LLatrieval (Large Language Model Verified Retrieval), where the LLM updates the retrieval result until it verifies that the retrieved documents can sufficiently support answering the question.
Experiments show that LLatrieval significantly outperforms extensive baselines and achieves state-of-the-art results.
arXiv Detail & Related papers (2023-11-14T01:38:02Z) - Evoke: Evoking Critical Thinking Abilities in LLMs via Reviewer-Author
Prompt Editing [19.241543540941283]
Large language models (LLMs) have made impressive progress in natural language processing.
We propose Evoke, an automatic prompt refinement framework.
In Evoke, there are two instances of a same LLM: one as a reviewer, it scores the current prompt; the other as an author, it edits the prompt by considering the edit history and the reviewer's feedback.
arXiv Detail & Related papers (2023-10-20T23:15:59Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
We study the factuality of large language models (LLMs) in the context of answering questions that test current world knowledge.
We introduce FreshQA, a novel dynamic QA benchmark encompassing a diverse range of question and answer types.
We benchmark a diverse array of both closed and open-source LLMs under a two-mode evaluation procedure that allows us to measure both correctness and hallucination.
Motivated by these results, we present FreshPrompt, a simple few-shot prompting method that substantially boosts the performance of an LLM on FreshQA.
arXiv Detail & Related papers (2023-10-05T00:04:12Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z) - Self-Prompting Large Language Models for Zero-Shot Open-Domain QA [67.08732962244301]
Open-Domain Question Answering (ODQA) aims to answer questions without explicitly providing background documents.
This task becomes notably challenging in a zero-shot setting where no data is available to train tailored retrieval-reader models.
We propose a Self-Prompting framework to explicitly utilize the massive knowledge encoded in the parameters of Large Language Models.
arXiv Detail & Related papers (2022-12-16T18:23:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.