論文の概要: Training Neural Samplers with Reverse Diffusive KL Divergence
- arxiv url: http://arxiv.org/abs/2410.12456v1
- Date: Wed, 16 Oct 2024 11:08:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:44:12.301769
- Title: Training Neural Samplers with Reverse Diffusive KL Divergence
- Title(参考訳): 逆拡散KLダイバージェンスを用いたニューラルサンプリングの訓練
- Authors: Jiajun He, Wenlin Chen, Mingtian Zhang, David Barber, José Miguel Hernández-Lobato,
- Abstract要約: 非正規化密度関数からサンプルを得るための生成モデルを訓練することは、機械学習において重要かつ困難な課題である。
従来の訓練方法は、そのトラクタビリティのため、逆のKL(Kulback-Leibler)の分岐に依存することが多い。
モデルおよび対象密度の拡散軌跡に沿った逆KLの最小化を提案する。
本手法はボルツマン分布のサンプリング性能を向上させることを実証する。
- 参考スコア(独自算出の注目度): 36.549460449020906
- License:
- Abstract: Training generative models to sample from unnormalized density functions is an important and challenging task in machine learning. Traditional training methods often rely on the reverse Kullback-Leibler (KL) divergence due to its tractability. However, the mode-seeking behavior of reverse KL hinders effective approximation of multi-modal target distributions. To address this, we propose to minimize the reverse KL along diffusion trajectories of both model and target densities. We refer to this objective as the reverse diffusive KL divergence, which allows the model to capture multiple modes. Leveraging this objective, we train neural samplers that can efficiently generate samples from the target distribution in one step. We demonstrate that our method enhances sampling performance across various Boltzmann distributions, including both synthetic multi-modal densities and n-body particle systems.
- Abstract(参考訳): 非正規化密度関数からサンプルを得るための生成モデルを訓練することは、機械学習において重要かつ困難な課題である。
従来の訓練方法は、そのトラクタビリティのため、逆のKL(Kulback-Leibler)の分岐に依存することが多い。
しかし、逆KLのモード探索挙動は、マルチモーダルターゲット分布の効率的な近似を妨げている。
そこで本研究では,モデルおよび対象密度の拡散軌跡に沿った逆KLの最小化を提案する。
この目的を、モデルが複数のモードをキャプチャできる逆拡散KL発散と呼ぶ。
この目的を生かして、ターゲット分布からサンプルを効率よく生成できるニューラルサンプリングを1ステップで訓練する。
本手法は, 合成多モード密度およびn-体粒子系を含む, ボルツマン分布のサンプリング性能を向上させることを実証する。
関連論文リスト
- Learned Reference-based Diffusion Sampling for multi-modal distributions [2.1383136715042417]
本稿では,学習参照に基づく拡散サンプリング(LRDS)について紹介する。
LRDSは、高密度空間領域にあるサンプルの参照拡散モデルを学ぶことによって、2段階で進行する。
LRDSは、様々な難解な分布上の競合するアルゴリズムと比較して、目標分布に関する事前知識を最大限に活用することが実験的に実証された。
論文 参考訳(メタデータ) (2024-10-25T10:23:34Z) - TransFusion: Covariate-Shift Robust Transfer Learning for High-Dimensional Regression [11.040033344386366]
対象タスクの学習性能を限定的なサンプルで向上させるため, 新規な融合正規化器を用いた2段階の手法を提案する。
対象モデルの推定誤差に対して、漸近的境界が提供される。
提案手法を分散設定に拡張し,事前学習ファインタニング戦略を実現する。
論文 参考訳(メタデータ) (2024-04-01T14:58:16Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
本研究では,非正規化密度やエネルギー関数を持つ分布からサンプルを抽出する拡散モデルの訓練問題について検討する。
シミュレーションに基づく変分法や非政治手法など,拡散構造推論手法のベンチマークを行った。
我々の結果は、過去の研究の主張に疑問を投げかけながら、既存のアルゴリズムの相対的な利点を浮き彫りにした。
論文 参考訳(メタデータ) (2024-02-07T18:51:49Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
本稿では,事前学習した拡散モデルのh空間における解釈可能な方向を特定するための,教師なしおよび学習に基づく最初の手法を提案する。
我々は、事前訓練された拡散モデルのh-スペースで動作するシフト制御モジュールを用いて、サンプルをシフトしたバージョンに操作する。
それらを共同で最適化することで、モデルは自然に絡み合った、解釈可能な方向を発見する。
論文 参考訳(メタデータ) (2023-10-15T18:44:30Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
観測誘導拡散確率モデル(OGDM)と呼ばれる新しい拡散に基づく画像生成法を提案する。
本手法は,観測プロセスの指導をマルコフ連鎖と統合することにより,トレーニング目標を再構築する。
本研究では,強力な拡散モデルベースライン上での多様な推論手法を用いたトレーニングアルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2023-10-06T06:29:06Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
拡散確率モデル(DPM)を用いた合成カウンターファクトの生成を利用したアンサンブルの多様化フレームワークを提案する。
拡散誘導型分散化は,データ収集を必要とする従来の手法に匹敵するアンサンブル多様性を達成し,ショートカットからの注意を回避できることを示す。
論文 参考訳(メタデータ) (2023-10-03T17:37:52Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
本稿では,任意の生成モデルの学習を指導するDiff-Instructというフレームワークを提案する。
Diff-Instructは、最先端の単一ステップ拡散モデルであることを示す。
GANモデルの精製実験により、Diff-InstructはGANモデルの事前訓練されたジェネレータを一貫して改善できることが示されている。
論文 参考訳(メタデータ) (2023-05-29T04:22:57Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
強化学習(RL)による拡散モデルの学習段階を導く新しい枠組みを提案する。
RLは、政策そのものではなく、指数スケールの報酬に比例したペイオフ分布からのサンプルによる政策勾配を計算することができる。
3次元形状と分子生成タスクの実験は、既存の条件拡散モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-14T13:51:26Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。