MING: A Functional Approach to Learning Molecular Generative Models
- URL: http://arxiv.org/abs/2410.12522v2
- Date: Mon, 17 Feb 2025 08:09:21 GMT
- Title: MING: A Functional Approach to Learning Molecular Generative Models
- Authors: Van Khoa Nguyen, Maciej Falkiewicz, Giangiacomo Mercatali, Alexandros Kalousis,
- Abstract summary: This paper introduces a novel paradigm for learning molecule generative models based on functional representations.
We propose Molecular Implicit Neural Generation (MING), a diffusion-based model that learns molecular distributions in the function space.
- Score: 46.189683355768736
- License:
- Abstract: Traditional molecule generation methods often rely on sequence- or graph-based representations, which can limit their expressive power or require complex permutation-equivariant architectures. This paper introduces a novel paradigm for learning molecule generative models based on functional representations. Specifically, we propose Molecular Implicit Neural Generation (MING), a diffusion-based model that learns molecular distributions in the function space. Unlike standard diffusion processes in the data space, MING employs a novel functional denoising probabilistic process, which jointly denoises information in both the function's input and output spaces by leveraging an expectation-maximization procedure for latent implicit neural representations of data. This approach enables a simple yet effective model design that accurately captures underlying function distributions. Experimental results on molecule-related datasets demonstrate MING's superior performance and ability to generate plausible molecular samples, surpassing state-of-the-art data-space methods while offering a more streamlined architecture and significantly faster generation times. The code is available at https://github.com/v18nguye/MING.
Related papers
- MDDM: A Molecular Dynamics Diffusion Model to Predict Particle Self-Assembly [0.0]
The Molecular Dynamics Diffusion Model is capable of predicting a valid output for a given input pair potential function.
The model significantly outperforms the baseline point-cloud diffusion model for both unconditional and conditional generation tasks.
arXiv Detail & Related papers (2025-01-28T22:21:45Z) - Exploring Molecule Generation Using Latent Space Graph Diffusion [0.0]
Generating molecular graphs is a challenging task due to their discrete nature and the competitive objectives involved.
For molecular graphs, graph neural networks (GNNs) as a diffusion backbone have achieved impressive results.
Latent space diffusion, where diffusion occurs in a low-dimensional space via an autoencoder, has demonstrated computational efficiency.
arXiv Detail & Related papers (2025-01-07T10:54:44Z) - Exploring Discrete Flow Matching for 3D De Novo Molecule Generation [0.0]
Flow matching is a recently proposed generative modeling framework that has achieved impressive performance on a variety of tasks.
We present FlowMol-CTMC, an open-source model that achieves state of the art performance for 3D de novo design with fewer learnable parameters than existing methods.
arXiv Detail & Related papers (2024-11-25T18:27:39Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
We present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation.
LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space.
We show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing.
arXiv Detail & Related papers (2024-05-28T04:59:13Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
We introduce Hierarchical textual Inversion for Molecular generation (HI-Mol), a novel data-efficient molecular generation method.
HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution.
Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution.
arXiv Detail & Related papers (2024-05-05T08:35:23Z) - Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling [2.1779479916071067]
We introduce a novel framework that enhances diffusion models by supporting a broader range of forward processes.
We also propose a novel parameterization technique for learning the forward process.
Results underscore NFDM's versatility and its potential for a wide range of applications.
arXiv Detail & Related papers (2024-04-19T15:10:54Z) - Variational Autoencoding Molecular Graphs with Denoising Diffusion
Probabilistic Model [0.0]
We propose a novel deep generative model that incorporates a hierarchical structure into the probabilistic latent vectors.
We demonstrate that our model can design effective molecular latent vectors for molecular property prediction from some experiments by small datasets on physical properties and activity.
arXiv Detail & Related papers (2023-07-02T17:29:41Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.