MDDM: A Molecular Dynamics Diffusion Model to Predict Particle Self-Assembly
- URL: http://arxiv.org/abs/2501.17319v1
- Date: Tue, 28 Jan 2025 22:21:45 GMT
- Title: MDDM: A Molecular Dynamics Diffusion Model to Predict Particle Self-Assembly
- Authors: Kevin Ferguson, Yu-hsuan Chen, Levent Burak Kara,
- Abstract summary: The Molecular Dynamics Diffusion Model is capable of predicting a valid output for a given input pair potential function.
The model significantly outperforms the baseline point-cloud diffusion model for both unconditional and conditional generation tasks.
- Score: 0.0
- License:
- Abstract: The discovery and study of new material systems relies on molecular simulations that often come with significant computational expense. We propose MDDM, a Molecular Dynamics Diffusion Model, which is capable of predicting a valid output conformation for a given input pair potential function. After training MDDM on a large dataset of molecular dynamics self-assembly results, the proposed model can convert uniform noise into a meaningful output particle structure corresponding to an arbitrary input potential. The model's architecture has domain-specific properties built-in, such as satisfying periodic boundaries and being invariant to translation. The model significantly outperforms the baseline point-cloud diffusion model for both unconditional and conditional generation tasks.
Related papers
- MING: A Functional Approach to Learning Molecular Generative Models [46.189683355768736]
This paper introduces a novel paradigm for learning molecule generative models based on functional representations.
We propose Molecular Implicit Neural Generation (MING), a diffusion-based model that learns molecular distributions in the function space.
arXiv Detail & Related papers (2024-10-16T13:02:02Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Generative Modeling of Molecular Dynamics Trajectories [12.255021091552441]
We introduce generative modeling of molecular trajectories as a paradigm for learning flexible multi-task surrogate models of MD from data.
We show such generative models can be adapted to diverse tasks such as forward simulation, transition path sampling, and trajectory upsampling.
arXiv Detail & Related papers (2024-09-26T13:02:28Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
We present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation.
LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space.
We show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing.
arXiv Detail & Related papers (2024-05-28T04:59:13Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Variational Autoencoding Molecular Graphs with Denoising Diffusion
Probabilistic Model [0.0]
We propose a novel deep generative model that incorporates a hierarchical structure into the probabilistic latent vectors.
We demonstrate that our model can design effective molecular latent vectors for molecular property prediction from some experiments by small datasets on physical properties and activity.
arXiv Detail & Related papers (2023-07-02T17:29:41Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Embedded-physics machine learning for coarse-graining and collective
variable discovery without data [3.222802562733787]
We present a novel learning framework that consistently embeds underlying physics.
We propose a novel objective based on reverse Kullback-Leibler divergence that fully incorporates the available physics in the form of the atomistic force field.
We demonstrate the algorithmic advances in terms of predictive ability and the physical meaning of the revealed CVs for a bimodal potential energy function and the alanine dipeptide.
arXiv Detail & Related papers (2020-02-24T10:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.