論文の概要: On the Role of Activation Functions in EEG-To-Text Decoder
- arxiv url: http://arxiv.org/abs/2410.12572v1
- Date: Wed, 16 Oct 2024 13:50:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:41:38.168753
- Title: On the Role of Activation Functions in EEG-To-Text Decoder
- Title(参考訳): EEG-to-Textデコーダにおけるアクティベーション機能の役割について
- Authors: Zenon Lamprou, Iakovos Tenedios, Yashar Moshfeghi,
- Abstract要約: 脳波を用いてテキストを生成する最初の試みの本来の性能を改善することを試みる。
モデルアーキテクチャを変更することなく,高次アクティベーション関数の導入によりモデル性能が向上することを示す。
また,学習可能な3次アクティベーション関数は,学習可能な3次アクティベーション関数よりも1-gram評価が優れていることを示す。
- 参考スコア(独自算出の注目度): 5.4141465747474475
- License:
- Abstract: In recent years, much interdisciplinary research has been conducted exploring potential use cases of neuroscience to advance the field of information retrieval. Initial research concentrated on the use of fMRI data, but fMRI was deemed to be not suitable for real-world applications, and soon, research shifted towards using EEG data. In this paper, we try to improve the original performance of a first attempt at generating text using EEG by focusing on the less explored area of optimising neural network performance. We test a set of different activation functions and compare their performance. Our results show that introducing a higher degree polynomial activation function can enhance model performance without changing the model architecture. We also show that the learnable 3rd-degree activation function performs better on the 1-gram evaluation compared to a 3rd-degree non-learnable function. However, when evaluating the model on 2-grams and above, the polynomial function lacks in performance, whilst the leaky ReLU activation function outperforms the baseline.
- Abstract(参考訳): 近年,情報検索の分野を推し進めるため,神経科学の可能性を探る学際的研究が盛んに行われている。
初期の研究はfMRIデータの利用に集中していたが、fMRIは現実世界のアプリケーションには適さないと考えられ、間もなく脳波データの利用へと移行した。
本稿では,脳波を用いたテキスト生成の最初の試みにおいて,ニューラルネットワークの性能を最適化する未検討領域に焦点をあてて,本来の性能向上を図る。
我々は、異なるアクティベーション関数のセットをテストし、それらの性能を比較する。
その結果,高次多項式アクティベーション関数を導入することで,モデルアーキテクチャを変更することなくモデル性能を向上させることができた。
また,学習可能な3次アクティベーション関数は,学習可能な3次アクティベーション関数よりも1-gram評価が優れていることを示す。
しかし、2-gram以上のモデルを評価する場合、多項式関数は性能に欠ける一方、リークなReLUアクティベーション関数はベースラインよりも優れる。
関連論文リスト
- Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes [70.66864668709677]
高価なブラックボックス関数のグローバル感度解析におけるアクティブラーニングの問題点を考察する。
関数評価は高価であるため,最も価値の高い実験資源の優先順位付けにアクティブラーニングを利用する。
本稿では,デリバティブに基づくグローバル感度測定の重要量を直接対象とする,新たな能動的学習獲得関数を提案する。
論文 参考訳(メタデータ) (2024-07-13T01:41:12Z) - A Method on Searching Better Activation Functions [15.180864683908878]
深層ニューラルネットワークにおける静的活性化関数を設計するためのエントロピーに基づくアクティベーション関数最適化(EAFO)手法を提案する。
我々は、CRRELU(Correction Regularized ReLU)として知られるReLUから新しいアクティベーション関数を導出する。
論文 参考訳(メタデータ) (2024-05-19T03:48:05Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Efficient Activation Function Optimization through Surrogate Modeling [15.219959721479835]
本稿は,3つのステップを通じて,芸術の状況を改善することを目的としている。
まず、Act-Bench-CNN、Act-Bench-ResNet、Act-Bench-ViTのベンチマークは、畳み込み、残留、ビジョントランスフォーマーアーキテクチャのトレーニングによって作成された。
第2に、ベンチマーク空間のキャラクタリゼーションが開発され、新しいサロゲートに基づく最適化手法が開発された。
論文 参考訳(メタデータ) (2023-01-13T23:11:14Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Transformers with Learnable Activation Functions [63.98696070245065]
我々は、Rational Activation Function (RAF) を用いて、入力データに基づいてトレーニング中の最適なアクティベーション関数を学習する。
RAFは、学習されたアクティベーション関数に従って事前学習されたモデルを分析し、解釈するための新しい研究方向を開く。
論文 参考訳(メタデータ) (2022-08-30T09:47:31Z) - Data-Driven Learning of Feedforward Neural Networks with Different
Activation Functions [0.0]
この研究は、フィードフォワードニューラルネットワーク(FNN)学習の新しいデータ駆動手法(D-DM)の開発に寄与する。
論文 参考訳(メタデータ) (2021-07-04T18:20:27Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Learning specialized activation functions with the Piecewise Linear Unit [7.820667552233989]
本稿では, 注意深く設計した定式化学習法を組み込んだ, 区分線形単位 (pwlu) と呼ばれる新しい活性化関数を提案する。
特殊なアクティベーション機能を学び、ImageNetやCOCOなどの大規模データセットでSOTA性能を達成できます。
PWLUは推論時に実装も簡単で効率も良く、現実世界のアプリケーションにも広く適用できる。
論文 参考訳(メタデータ) (2021-04-08T11:29:11Z) - An Investigation of Potential Function Designs for Neural CRF [75.79555356970344]
本稿では,ニューラルCRFモデルに対する一連の表現力のあるポテンシャル関数について検討する。
実験により, 隣接する2つのラベルと隣接する2つの単語のベクトル表現に基づく分解された二次ポテンシャル関数が, 常に最高の性能を達成することを示す。
論文 参考訳(メタデータ) (2020-11-11T07:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。