On the Role of Activation Functions in EEG-To-Text Decoder
- URL: http://arxiv.org/abs/2410.12572v1
- Date: Wed, 16 Oct 2024 13:50:04 GMT
- Title: On the Role of Activation Functions in EEG-To-Text Decoder
- Authors: Zenon Lamprou, Iakovos Tenedios, Yashar Moshfeghi,
- Abstract summary: We try to improve the original performance of a first attempt at generating text using EEG.
We show that introducing a higher degree activation function can enhance model performance without changing the model architecture.
We also show that the learnable 3rd-degree activation function performs better on the 1-gram evaluation compared to a 3rd-degree non-learnable function.
- Score: 5.4141465747474475
- License:
- Abstract: In recent years, much interdisciplinary research has been conducted exploring potential use cases of neuroscience to advance the field of information retrieval. Initial research concentrated on the use of fMRI data, but fMRI was deemed to be not suitable for real-world applications, and soon, research shifted towards using EEG data. In this paper, we try to improve the original performance of a first attempt at generating text using EEG by focusing on the less explored area of optimising neural network performance. We test a set of different activation functions and compare their performance. Our results show that introducing a higher degree polynomial activation function can enhance model performance without changing the model architecture. We also show that the learnable 3rd-degree activation function performs better on the 1-gram evaluation compared to a 3rd-degree non-learnable function. However, when evaluating the model on 2-grams and above, the polynomial function lacks in performance, whilst the leaky ReLU activation function outperforms the baseline.
Related papers
- Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes [70.66864668709677]
We consider the problem of active learning for global sensitivity analysis of expensive black-box functions.
Since function evaluations are expensive, we use active learning to prioritize experimental resources where they yield the most value.
We propose novel active learning acquisition functions that directly target key quantities of derivative-based global sensitivity measures.
arXiv Detail & Related papers (2024-07-13T01:41:12Z) - A Method on Searching Better Activation Functions [15.180864683908878]
We propose Entropy-based Activation Function Optimization (EAFO) methodology for designing static activation functions in deep neural networks.
We derive a novel activation function from ReLU, known as Correction Regularized ReLU (CRReLU)
arXiv Detail & Related papers (2024-05-19T03:48:05Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Efficient Activation Function Optimization through Surrogate Modeling [15.219959721479835]
This paper aims to improve the state of the art through three steps.
First, the benchmark Act-Bench-CNN, Act-Bench-ResNet, and Act-Bench-ViT were created by training convolutional, residual, and vision transformer architectures.
Second, a characterization of the benchmark space was developed, leading to a new surrogate-based method for optimization.
arXiv Detail & Related papers (2023-01-13T23:11:14Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Transformers with Learnable Activation Functions [63.98696070245065]
We use Rational Activation Function (RAF) to learn optimal activation functions during training according to input data.
RAF opens a new research direction for analyzing and interpreting pre-trained models according to the learned activation functions.
arXiv Detail & Related papers (2022-08-30T09:47:31Z) - Data-Driven Learning of Feedforward Neural Networks with Different
Activation Functions [0.0]
This work contributes to the development of a new data-driven method (D-DM) of feedforward neural networks (FNNs) learning.
arXiv Detail & Related papers (2021-07-04T18:20:27Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Learning specialized activation functions with the Piecewise Linear Unit [7.820667552233989]
We propose a new activation function called Piecewise Linear Unit(PWLU), which incorporates a carefully designed formulation and learning method.
It can learn specialized activation functions and achieves SOTA performance on large-scale datasets like ImageNet and COCO.
PWLU is also easy to implement and efficient at inference, which can be widely applied in real-world applications.
arXiv Detail & Related papers (2021-04-08T11:29:11Z) - An Investigation of Potential Function Designs for Neural CRF [75.79555356970344]
In this paper, we investigate a series of increasingly expressive potential functions for neural CRF models.
Our experiments show that the decomposed quadrilinear potential function based on the vector representations of two neighboring labels and two neighboring words consistently achieves the best performance.
arXiv Detail & Related papers (2020-11-11T07:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.