Data-Driven Learning of Feedforward Neural Networks with Different
Activation Functions
- URL: http://arxiv.org/abs/2107.01702v2
- Date: Tue, 6 Jul 2021 07:33:13 GMT
- Title: Data-Driven Learning of Feedforward Neural Networks with Different
Activation Functions
- Authors: Grzegorz Dudek
- Abstract summary: This work contributes to the development of a new data-driven method (D-DM) of feedforward neural networks (FNNs) learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work contributes to the development of a new data-driven method (D-DM)
of feedforward neural networks (FNNs) learning. This method was proposed
recently as a way of improving randomized learning of FNNs by adjusting the
network parameters to the target function fluctuations. The method employs
logistic sigmoid activation functions for hidden nodes. In this study, we
introduce other activation functions, such as bipolar sigmoid, sine function,
saturating linear functions, reLU, and softplus. We derive formulas for their
parameters, i.e. weights and biases. In the simulation study, we evaluate the
performance of FNN data-driven learning with different activation functions.
The results indicate that the sigmoid activation functions perform much better
than others in the approximation of complex, fluctuated target functions.
Related papers
- ENN: A Neural Network with DCT Adaptive Activation Functions [2.2713084727838115]
We present Expressive Neural Network (ENN), a novel model in which the non-linear activation functions are modeled using the Discrete Cosine Transform (DCT)
This parametrization keeps the number of trainable parameters low, is appropriate for gradient-based schemes, and adapts to different learning tasks.
The performance of ENN outperforms state of the art benchmarks, providing above a 40% gap in accuracy in some scenarios.
arXiv Detail & Related papers (2023-07-02T21:46:30Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
We propose Versatile Neural Processes (VNP), which largely increases the capability of approximating functions.
Specifically, we introduce a bottleneck encoder that produces fewer and informative context tokens, relieving the high computational cost.
We demonstrate the effectiveness of the proposed VNP on a variety of tasks involving 1D, 2D and 3D signals.
arXiv Detail & Related papers (2023-01-21T04:08:46Z) - Neural Estimation of Submodular Functions with Applications to
Differentiable Subset Selection [50.14730810124592]
Submodular functions and variants, through their ability to characterize diversity and coverage, have emerged as a key tool for data selection and summarization.
We propose FLEXSUBNET, a family of flexible neural models for both monotone and non-monotone submodular functions.
arXiv Detail & Related papers (2022-10-20T06:00:45Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Graph-adaptive Rectified Linear Unit for Graph Neural Networks [64.92221119723048]
Graph Neural Networks (GNNs) have achieved remarkable success by extending traditional convolution to learning on non-Euclidean data.
We propose Graph-adaptive Rectified Linear Unit (GReLU) which is a new parametric activation function incorporating the neighborhood information in a novel and efficient way.
We conduct comprehensive experiments to show that our plug-and-play GReLU method is efficient and effective given different GNN backbones and various downstream tasks.
arXiv Detail & Related papers (2022-02-13T10:54:59Z) - Otimizacao de pesos e funcoes de ativacao de redes neurais aplicadas na
previsao de series temporais [0.0]
We propose the use of a family of free parameter asymmetric activation functions for neural networks.
We show that this family of defined activation functions satisfies the requirements of the universal approximation theorem.
A methodology for the global optimization of this family of activation functions with free parameter and the weights of the connections between the processing units of the neural network is used.
arXiv Detail & Related papers (2021-07-29T23:32:15Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - Non-linear Functional Modeling using Neural Networks [6.624726878647541]
We introduce a new class of non-linear models for functional data based on neural networks.
We propose two variations of our framework: a functional neural network with continuous hidden layers, and a second version that utilizes basis expansions and continuous hidden layers.
arXiv Detail & Related papers (2021-04-19T14:59:55Z) - Estimating Multiplicative Relations in Neural Networks [0.0]
We will use properties of logarithmic functions to propose a pair of activation functions which can translate products into linear expression and learn using backpropagation.
We will try to generalize this approach for some complex arithmetic functions and test the accuracy on a disjoint distribution with the training set.
arXiv Detail & Related papers (2020-10-28T14:28:24Z) - UNIPoint: Universally Approximating Point Processes Intensities [125.08205865536577]
We provide a proof that a class of learnable functions can universally approximate any valid intensity function.
We implement UNIPoint, a novel neural point process model, using recurrent neural networks to parameterise sums of basis function upon each event.
arXiv Detail & Related papers (2020-07-28T09:31:56Z) - Trainable Activation Function in Image Classification [0.0]
This paper focus on how to make the activation function trainable for deep neural networks.
We use series and linear combination of different activation functions make activation functions continuously variable.
arXiv Detail & Related papers (2020-04-28T03:50:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.