Weak-to-Strong Generalization beyond Accuracy: a Pilot Study in Safety, Toxicity, and Legal Reasoning
- URL: http://arxiv.org/abs/2410.12621v1
- Date: Wed, 16 Oct 2024 14:40:32 GMT
- Title: Weak-to-Strong Generalization beyond Accuracy: a Pilot Study in Safety, Toxicity, and Legal Reasoning
- Authors: Ruimeng Ye, Yang Xiao, Bo Hui,
- Abstract summary: Traditional alignment methods rely on human feedback to fine-tune models.
Superhuman models whose outputs may surpass human understanding poses significant challenges.
Recent works use weak supervisors to elicit knowledge from much stronger models.
- Score: 10.752609242505953
- License:
- Abstract: As large language models (LLMs) continue to advance, ensuring their alignment with human values becomes increasingly critical. Traditional alignment methods heavily rely on human feedback to fine-tune models. With the emergence of superhuman models whose outputs may surpass human understanding, evaluating and aligning these models using human judgments poses significant challenges. To address the challenges, recent works use weak supervisors to elicit knowledge from much stronger models. However, there are important disanalogies between the empirical setup in the existing works and the genuine goal of alignment. We remark that existing works investigate the phenomenon of weak-to-strong generation in analogous setup (i.e., binary classification), rather than practical alignment-relevant tasks (e.g., safety). In this paper, we bridge this gap by extending weak-to-strong generation to the context of practical alignment. We empirically demonstrate the widespread phenomenon of weak-to-strong generation in three complicated alignment tasks: safety, toxicity, and legal reasoning}. Furthermore, we explore efficient strategies for improving alignment performance to enhance the quality of model outcomes. Lastly, we summarize and analyze the challenges and potential solutions in regard to specific alignment tasks, which we hope to catalyze the research progress on the topic of weak-to-strong generalization. Our code is released at https://github.com/yeruimeng/WTS.git.
Related papers
- Adversarial Alignment for LLMs Requires Simpler, Reproducible, and More Measurable Objectives [52.863024096759816]
Misaligned research objectives have hindered progress in adversarial robustness research over the past decade.
We argue that realigned objectives are necessary for meaningful progress in adversarial alignment.
arXiv Detail & Related papers (2025-02-17T15:28:40Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.
Models may behave unreliably due to poorly explored failure modes.
causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - Debate Helps Weak-to-Strong Generalization [68.70065254564642]
We investigate ways of improving human supervision with a strong pretrained model and then supervise the strong model with enhanced weak human supervision.
We find that debate can assist a weak model in extracting trustworthy information from an untrustworthy strong model.
Experiments on the OpenAI weak-to-strong NLP benchmarks show that the combination approach leads to better alignment.
arXiv Detail & Related papers (2025-01-21T05:36:13Z) - The Superalignment of Superhuman Intelligence with Large Language Models [63.96120398355404]
We discuss the concept of superalignment from the learning perspective to answer this question.
We highlight some key research problems in superalignment, namely, weak-to-strong generalization, scalable oversight, and evaluation.
We present a conceptual framework for superalignment, which consists of three modules: an attacker which generates adversary queries trying to expose the weaknesses of a learner model; a learner which will refine itself by learning from scalable feedbacks generated by a critic model along with minimal human experts; and a critic which generates critics or explanations for a given query-response pair, with a target of improving the learner by criticizing.
arXiv Detail & Related papers (2024-12-15T10:34:06Z) - Super(ficial)-alignment: Strong Models May Deceive Weak Models in Weak-to-Strong Generalization [68.62228569439478]
We investigate whether there exists an issue of weak-to-strong deception.
We find that the deception intensifies as the capability gap between weak and strong models increases.
Our work highlights the urgent need to pay more attention to the true reliability of superalignment.
arXiv Detail & Related papers (2024-06-17T11:36:39Z) - Bayesian WeakS-to-Strong from Text Classification to Generation [14.897191979004782]
This work extends Weak-to-Strong to WeakS-to-Strong by exploring an ensemble of weak models which simulate the variability in human opinions.
Confidence scores are estimated using a Bayesian approach to guide the WeakS-to-Strong generalization.
Results demonstrate the effectiveness of the proposed approach for the reliability of a strong student model, showing potential for superalignment.
arXiv Detail & Related papers (2024-05-24T13:33:11Z) - Vision Superalignment: Weak-to-Strong Generalization for Vision
Foundation Models [55.919653720979824]
This paper focuses on the concept of weak-to-strong generalization, which involves using a weaker model to supervise a stronger one.
We introduce a novel and adaptively adjustable loss function for weak-to-strong supervision.
Our approach not only exceeds the performance benchmarks set by strong-to-strong generalization but also surpasses the outcomes of fine-tuning strong models with whole datasets.
arXiv Detail & Related papers (2024-02-06T06:30:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.