The Superalignment of Superhuman Intelligence with Large Language Models
- URL: http://arxiv.org/abs/2412.11145v2
- Date: Mon, 23 Dec 2024 05:29:44 GMT
- Title: The Superalignment of Superhuman Intelligence with Large Language Models
- Authors: Minlie Huang, Yingkang Wang, Shiyao Cui, Pei Ke, Jie Tang,
- Abstract summary: We discuss the concept of superalignment from the learning perspective to answer this question.
We highlight some key research problems in superalignment, namely, weak-to-strong generalization, scalable oversight, and evaluation.
We present a conceptual framework for superalignment, which consists of three modules: an attacker which generates adversary queries trying to expose the weaknesses of a learner model; a learner which will refine itself by learning from scalable feedbacks generated by a critic model along with minimal human experts; and a critic which generates critics or explanations for a given query-response pair, with a target of improving the learner by criticizing.
- Score: 63.96120398355404
- License:
- Abstract: We have witnessed superhuman intelligence thanks to the fast development of large language models and multimodal language models. As the application of such superhuman models becomes more and more popular, a critical question arises here: how can we ensure superhuman models are still safe, reliable and aligned well to human values? In this position paper, we discuss the concept of superalignment from the learning perspective to answer this question by outlining the learning paradigm shift from large-scale pretraining, supervised fine-tuning, to alignment training. We define superalignment as designing effective and efficient alignment algorithms to learn from noisy-labeled data (point-wise samples or pair-wise preference data) in a scalable way when the task becomes very complex for human experts to annotate and the model is stronger than human experts. We highlight some key research problems in superalignment, namely, weak-to-strong generalization, scalable oversight, and evaluation. We then present a conceptual framework for superalignment, which consists of three modules: an attacker which generates adversary queries trying to expose the weaknesses of a learner model; a learner which will refine itself by learning from scalable feedbacks generated by a critic model along with minimal human experts; and a critic which generates critics or explanations for a given query-response pair, with a target of improving the learner by criticizing. We discuss some important research problems in each component of this framework and highlight some interesting research ideas that are closely related to our proposed framework, for instance, self-alignment, self-play, self-refinement, and more. Last, we highlight some future research directions for superalignment, including identification of new emergent risks and multi-dimensional alignment.
Related papers
- Weak-to-Strong Generalization beyond Accuracy: a Pilot Study in Safety, Toxicity, and Legal Reasoning [10.752609242505953]
Traditional alignment methods rely on human feedback to fine-tune models.
Superhuman models whose outputs may surpass human understanding poses significant challenges.
Recent works use weak supervisors to elicit knowledge from much stronger models.
arXiv Detail & Related papers (2024-10-16T14:40:32Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - BRAINTEASER: Lateral Thinking Puzzles for Large Language Models [15.95314613982879]
BRAINTEASER is a multiple-choice Question Answering task designed to test the model's ability to exhibit lateral thinking.
Our experiments with state-of-the-art instruction- and commonsense language models reveal a significant gap between human and model performance.
We make all of our code and data available to stimulate work on developing and evaluating lateral thinking models.
arXiv Detail & Related papers (2023-10-08T07:46:01Z) - OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities [19.83434949066066]
This paper introduces a novel intelligent framework, referred to as OlaGPT.
OlaGPT carefully studied a cognitive architecture framework, and propose to simulate certain aspects of human cognition.
The framework involves approximating different cognitive modules, including attention, memory, reasoning, learning, and corresponding scheduling and decision-making mechanisms.
arXiv Detail & Related papers (2023-05-23T09:36:51Z) - A Framework for Understanding Model Extraction Attack and Defense [48.421636548746704]
We study tradeoffs between model utility from a benign user's view and privacy from an adversary's view.
We develop new metrics to quantify such tradeoffs, analyze their theoretical properties, and develop an optimization problem to understand the optimal adversarial attack and defense strategies.
arXiv Detail & Related papers (2022-06-23T05:24:52Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of
Language Models [86.02610674750345]
Adversarial GLUE (AdvGLUE) is a new multi-task benchmark to explore and evaluate the vulnerabilities of modern large-scale language models under various types of adversarial attacks.
We apply 14 adversarial attack methods to GLUE tasks to construct AdvGLUE, which is further validated by humans for reliable annotations.
All the language models and robust training methods we tested perform poorly on AdvGLUE, with scores lagging far behind the benign accuracy.
arXiv Detail & Related papers (2021-11-04T12:59:55Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.