Constrained Posterior Sampling: Time Series Generation with Hard Constraints
- URL: http://arxiv.org/abs/2410.12652v1
- Date: Wed, 16 Oct 2024 15:16:04 GMT
- Title: Constrained Posterior Sampling: Time Series Generation with Hard Constraints
- Authors: Sai Shankar Narasimhan, Shubhankar Agarwal, Litu Rout, Sanjay Shakkottai, Sandeep P. Chinchali,
- Abstract summary: Time series samples are crucial for stress-testing models and protecting user privacy by using synthetic data.
Existing approaches for generating constrained time series are either not scalable or degrade sample quality.
We introduce Constrained Posterior Sampling (CPS), a diffusion-based sampling algorithm that aims to project the posterior mean estimate into the constraint set after each denoising update.
CPS outperforms state-of-the-art methods in sample quality and similarity to real time series by around 10% and 42%, respectively, on real-world stocks, traffic, and air quality datasets.
- Score: 21.48057675740321
- License:
- Abstract: Generating realistic time series samples is crucial for stress-testing models and protecting user privacy by using synthetic data. In engineering and safety-critical applications, these samples must meet certain hard constraints that are domain-specific or naturally imposed by physics or nature. Consider, for example, generating electricity demand patterns with constraints on peak demand times. This can be used to stress-test the functioning of power grids during adverse weather conditions. Existing approaches for generating constrained time series are either not scalable or degrade sample quality. To address these challenges, we introduce Constrained Posterior Sampling (CPS), a diffusion-based sampling algorithm that aims to project the posterior mean estimate into the constraint set after each denoising update. Notably, CPS scales to a large number of constraints (~100) without requiring additional training. We provide theoretical justifications highlighting the impact of our projection step on sampling. Empirically, CPS outperforms state-of-the-art methods in sample quality and similarity to real time series by around 10% and 42%, respectively, on real-world stocks, traffic, and air quality datasets.
Related papers
- Recurrent Neural Goodness-of-Fit Test for Time Series [8.22915954499148]
Time series data are crucial across diverse domains such as finance and healthcare.
Traditional evaluation metrics fall short due to the temporal dependencies and potential high dimensionality of the features.
We propose the REcurrent NeurAL (RENAL) Goodness-of-Fit test, a novel and statistically rigorous framework for evaluating generative time series models.
arXiv Detail & Related papers (2024-10-17T19:32:25Z) - TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models [52.454274602380124]
Diffusion models heavily depend on the time-step $t$ to achieve satisfactory multi-round denoising.
We propose a Temporal Feature Maintenance Quantization (TFMQ) framework building upon a Temporal Information Block.
Powered by the pioneering block design, we devise temporal information aware reconstruction (TIAR) and finite set calibration (FSC) to align the full-precision temporal features.
arXiv Detail & Related papers (2023-11-27T12:59:52Z) - On the Constrained Time-Series Generation Problem [1.7731793321727365]
We propose a novel set of methods to tackle the constrained time series generation problem.
We frame the problem using a constrained optimization framework and then we propose a set of generative methods including "GuidedDiffTime"
Our approaches outperform existing work both qualitatively and quantitatively.
arXiv Detail & Related papers (2023-07-04T13:43:05Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - Breaking the Spurious Causality of Conditional Generation via Fairness
Intervention with Corrective Sampling [77.15766509677348]
Conditional generative models often inherit spurious correlations from the training dataset.
This can result in label-conditional distributions that are imbalanced with respect to another latent attribute.
We propose a general two-step strategy to mitigate this issue.
arXiv Detail & Related papers (2022-12-05T08:09:33Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Anytime Sampling for Autoregressive Models via Ordered Autoencoding [88.01906682843618]
Autoregressive models are widely used for tasks such as image and audio generation.
The sampling process of these models does not allow interruptions and cannot adapt to real-time computational resources.
We propose a new family of autoregressive models that enables anytime sampling.
arXiv Detail & Related papers (2021-02-23T05:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.