論文の概要: Automatic Mapping of Anatomical Landmarks from Free-Text Using Large Language Models: Insights from Llama-2
- arxiv url: http://arxiv.org/abs/2410.12686v1
- Date: Wed, 16 Oct 2024 15:48:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:44:44.729840
- Title: Automatic Mapping of Anatomical Landmarks from Free-Text Using Large Language Models: Insights from Llama-2
- Title(参考訳): 大規模言語モデルを用いた自由テキストからの解剖学的ランドマークの自動マッピング:Llama-2からの考察
- Authors: Mohamad Abdi, Gerardo Hemosillo Valadez, Halid Ziya Yerebakan,
- Abstract要約: 解剖学的ランドマークは、ナビゲーションと異常検出のための医療画像に不可欠である。
現代の大言語モデル(LLM)は、自由テキストラジオグラフィーレポートでこれらのランドマークを画像データの対応する位置にマッピングすることを約束する。
- 参考スコア(独自算出の注目度): 0.04096453902709291
- License:
- Abstract: Anatomical landmarks are vital in medical imaging for navigation and anomaly detection. Modern large language models (LLMs), like Llama-2, offer promise for automating the mapping of these landmarks in free-text radiology reports to corresponding positions in image data. Recent studies propose LLMs may develop coherent representations of generative processes. Motivated by these insights, we investigated whether LLMs accurately represent the spatial positions of anatomical landmarks. Through experiments with Llama-2 models, we found that they can linearly represent anatomical landmarks in space with considerable robustness to different prompts. These results underscore the potential of LLMs to enhance the efficiency and accuracy of medical imaging workflows.
- Abstract(参考訳): 解剖学的ランドマークは、ナビゲーションと異常検出のための医療画像に不可欠である。
Llama-2のような現代の大規模言語モデル(LLM)は、自由テキストラジオグラフィーレポートにおけるこれらのランドマークの対応する位置へのマッピングを自動化することを約束している。
最近の研究で、LLMは生成過程のコヒーレントな表現を発達させる可能性がある。
これらの知見から,LLMが解剖学的ランドマークの空間的位置を正確に表現するかどうかを検討した。
Llama-2モデルを用いた実験により、異なるプロンプトに対してかなり頑健な空間における解剖学的ランドマークを線形に表現できることが判明した。
これらの結果は、医療画像ワークフローの効率性と精度を高めるため、LCMの可能性を裏付けるものである。
関連論文リスト
- Synthetic Augmentation for Anatomical Landmark Localization using DDPMs [0.22499166814992436]
拡散型生成モデルは近年,高品質な合成画像を生成する能力に注目が集まっている。
ランドマークマッチングのためのマルコフランダムフィールド(MRF)モデルと統計的形状モデル(SSM)を用いて,生成画像の品質を評価する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-16T12:09:38Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
リアルタイムガイドワイヤ分割と追跡のための2段階のディープラーニングフレームワークを提案する。
第1段階では、ヨロフ5検出器が元のX線画像と合成画像を使って訓練され、ターゲットのガイドワイヤのバウンディングボックスを出力する。
第2段階では、検出された各バウンディングボックスにガイドワイヤを分割するために、新規で効率的なネットワークが提案されている。
論文 参考訳(メタデータ) (2024-04-12T20:39:19Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraphは、大規模言語モデルのためのモデルベースのホワイトボックス検出および予測手法である。
LLMの内部状態遷移ダイナミクスを解析することにより,幻覚を効果的に検出できることを示す。
我々の研究は、LLMのモデルベースのホワイトボックス分析の新しい手法を開拓し、LLMの振る舞いの複雑なダイナミクスをさらに探求し、理解し、洗練する研究コミュニティを動機付けている。
論文 参考訳(メタデータ) (2024-04-06T20:02:20Z) - Residual-based Language Models are Free Boosters for Biomedical Imaging [15.154015369984572]
本研究では,バイオメディカルイメージングタスクのエンコーダの一部として,残留型大規模言語モデル(LLM)の予期せぬ有効性を明らかにする。
これらのLCMは,2次元と3次元の視覚的分類タスクを含む,様々なバイオメディカルイメージングアプリケーションにおいて,性能を向上させることができることがわかった。
副産物として,提案手法は,MedMNIST-2Dと3Dの広範囲な標準化データセットに対して,最先端の成果を新たに設定し,優れた性能を実現した。
論文 参考訳(メタデータ) (2024-03-26T03:05:20Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - Customizing General-Purpose Foundation Models for Medical Report
Generation [64.31265734687182]
ラベル付き医用画像-レポートペアの不足は、ディープニューラルネットワークや大規模ニューラルネットワークの開発において大きな課題となっている。
本稿では,コンピュータビジョンと自然言語処理の基盤モデル (FM) として,市販の汎用大規模事前学習モデルのカスタマイズを提案する。
論文 参考訳(メタデータ) (2023-06-09T03:02:36Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - Simulating Realistic MRI variations to Improve Deep Learning model and
visual explanations using GradCAM [0.0]
修正されたHighRes3DNetモデルを用いて、脳MRIボリュームランドマーク検出問題を解く。
Grad-CAMは、モデルがフォーカスしている領域を示す粗いローカライゼーションマップを生成する。
論文 参考訳(メタデータ) (2021-11-01T11:14:23Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
解剖学的顔と医学的ランドマーク検出のための新しいトポロジ適応深層グラフ学習手法を提案する。
提案手法は局所像特徴と大域形状特徴の両方を利用するグラフ信号を構成する。
3つの公開顔画像データセット(WFLW、300W、COFW-68)と3つの現実世界のX線医学データセット(ケパロメトリ、ハンド、ペルビス)で実験を行った。
論文 参考訳(メタデータ) (2020-04-17T11:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。