論文の概要: Vaccinating Federated Learning for Robust Modulation Classification in Distributed Wireless Networks
- arxiv url: http://arxiv.org/abs/2410.12772v1
- Date: Wed, 16 Oct 2024 17:48:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:41:20.425924
- Title: Vaccinating Federated Learning for Robust Modulation Classification in Distributed Wireless Networks
- Title(参考訳): 分散無線ネットワークにおけるロバスト変調分類のための予防的フェデレーション学習
- Authors: Hunmin Lee, Hongju Seong, Wonbin Kim, Hyeokchan Kwon, Daehee Seo,
- Abstract要約: 雑音レベルの異なる信号間の一般化性向上を目的とした新しいAMCモデルであるFedVaccineを提案する。
FedVaccineは、分割学習戦略を用いることで、既存のFLベースのAMCモデルの線形集約の限界を克服する。
これらの結果は、実用的な無線ネットワーク環境におけるAMCシステムの信頼性と性能を高めるためのFedVaccineの可能性を浮き彫りにした。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Automatic modulation classification (AMC) serves a vital role in ensuring efficient and reliable communication services within distributed wireless networks. Recent developments have seen a surge in interest in deep neural network (DNN)-based AMC models, with Federated Learning (FL) emerging as a promising framework. Despite these advancements, the presence of various noises within the signal exerts significant challenges while optimizing models to capture salient features. Furthermore, existing FL-based AMC models commonly rely on linear aggregation strategies, which face notable difficulties in integrating locally fine-tuned parameters within practical non-IID (Independent and Identically Distributed) environments, thereby hindering optimal learning convergence. To address these challenges, we propose FedVaccine, a novel FL model aimed at improving generalizability across signals with varying noise levels by deliberately introducing a balanced level of noise. This is accomplished through our proposed harmonic noise resilience approach, which identifies an optimal noise tolerance for DNN models, thereby regulating the training process and mitigating overfitting. Additionally, FedVaccine overcomes the limitations of existing FL-based AMC models' linear aggregation by employing a split-learning strategy using structural clustering topology and local queue data structure, enabling adaptive and cumulative updates to local models. Our experimental results, including IID and non-IID datasets as well as ablation studies, confirm FedVaccine's robust performance and superiority over existing FL-based AMC approaches across different noise levels. These findings highlight FedVaccine's potential to enhance the reliability and performance of AMC systems in practical wireless network environments.
- Abstract(参考訳): 自動変調分類(AMC)は、分散無線ネットワーク内の効率的な信頼性の高い通信サービスを確保する上で重要な役割を担っている。
近年、ディープニューラルネットワーク(DNN)ベースのAMCモデルへの関心が高まっており、フェデレートラーニング(FL)が有望なフレームワークとして登場している。
これらの進歩にもかかわらず、信号内に様々なノイズが存在することは、モデルが正常な特徴を捉えるのを最適化する一方で、大きな課題を生んでいる。
さらに、既存のFLベースのAMCモデルでは、非IID(Independent and Identically Distributed)環境において局所的に微調整されたパラメータを統合することの難しさに直面する線形集約戦略が一般的であり、それによって最適な学習収束を妨げている。
これらの課題に対処するため,FedVaccineを提案する。FedVaccineは,雑音のバランスレベルを意図的に導入することにより,信号間の一般化性を向上させることを目的とした,新しいFLモデルである。
提案手法は, DNNモデルに対して最適な耐雑音性を同定し, トレーニングプロセスの調整と過度適合の緩和を行う。
さらにFedVaccineは、構造的クラスタリングトポロジと局所キューデータ構造を用いた分割学習戦略を用いることで、既存のFLベースのAMCモデルの線形集約の限界を克服し、局所モデルへの適応的および累積的な更新を可能にする。
IIDおよび非IIDデータセット、アブレーション研究を含む実験結果により、FedVaccineの頑健な性能と既存のFLベースのAMCアプローチよりも優れた性能が確認された。
これらの結果は、実用的な無線ネットワーク環境におけるAMCシステムの信頼性と性能を高めるためのFedVaccineの可能性を浮き彫りにした。
関連論文リスト
- Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - MoE-AMC: Enhancing Automatic Modulation Classification Performance Using
Mixture-of-Experts [2.6764607949560593]
MoE-AMCは、Mixture-of-Experts (MoE)ベースの新しいモデルで、AMC(Automatic Modulation Classification)にバランスよく対処するために開発された。
MoE-AMCは低SNR信号を扱うLSRMと高SNR信号を扱うHSRMの強度をシームレスに結合する。
実験の結果、MoE-AMCはSNRレベルによって71.76%の平均的な分類精度を達成し、以前のSOTAモデルの性能を10%近く上回った。
論文 参考訳(メタデータ) (2023-12-04T19:31:15Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Mobilizing Personalized Federated Learning in Infrastructure-Less and
Heterogeneous Environments via Random Walk Stochastic ADMM [0.14597673707346284]
本稿では,データヘテロジニティを持つ孤立ノードを特徴とする実践シナリオにおいて,フェデレートラーニング(FL)を実装する上での課題について考察する。
これらの課題を克服するために,モビリティとレジリエンスの促進を目的とした,パーソナライズされたFLアプローチを提案する。
我々はRWSADMM(Random Walk Alternating Direction Method of Multipliers)と呼ばれる新しい最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-04-25T03:00:18Z) - FLCC: Efficient Distributed Federated Learning on IoMT over CSMA/CA [0.0]
フェデレートラーニング(FL)は、プライバシー保護のための有望なアプローチとして登場した。
本稿では,アドホックネットワーク上で遠隔医療システムを改善するアプリケーションにおけるFLの性能について検討する。
ネットワーク性能を評価するための指標として,1) 干渉を最小限に抑えながら伝送を成功させる確率,2) 精度と損失の点で分散FLモデルの性能を示す。
論文 参考訳(メタデータ) (2023-03-29T16:36:42Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
本稿では、RFedDisと呼ばれる新しい信頼性のあるフェデレーション・ディエンタングリング・ネットワークを提案する。
我々の知る限り、提案するRFedDisは、明らかな不確実性と特徴の混在に基づくFLアプローチを開発する最初の試みである。
提案するRFedDisは,他の最先端FL手法と比較して信頼性の高い優れた性能を提供する。
論文 参考訳(メタデータ) (2023-01-30T11:46:34Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - SafeAMC: Adversarial training for robust modulation recognition models [53.391095789289736]
通信システムには、Deep Neural Networks(DNN)モデルに依存する変調認識など、多くのタスクがある。
これらのモデルは、逆方向の摂動、すなわち、誤分類を引き起こすために作られた知覚不能な付加音に影響を受けやすいことが示されている。
本稿では,自動変調認識モデルのロバスト性を高めるために,逆方向の摂動を伴うモデルを微調整する逆方向トレーニングを提案する。
論文 参考訳(メタデータ) (2021-05-28T11:29:04Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
畳み込み層を用いたディープニューラルネットワーク(DNN)は、通信における多くのタスクにおいて最先端である。
画像分類のような他の領域では、DNNは敵の摂動に弱いことが示されている。
最新モデルの堅牢性をテストするための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T19:58:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。