Interpretable Rule-Based System for Radar-Based Gesture Sensing: Enhancing Transparency and Personalization in AI
- URL: http://arxiv.org/abs/2410.12806v1
- Date: Mon, 30 Sep 2024 16:40:27 GMT
- Title: Interpretable Rule-Based System for Radar-Based Gesture Sensing: Enhancing Transparency and Personalization in AI
- Authors: Sarah Seifi, Tobias Sukianto, Cecilia Carbonelli, Lorenzo Servadei, Robert Wille,
- Abstract summary: We introduce MIRA, a transparent and interpretable multi-class rule-based algorithm tailored for radar-based gesture detection.
We showcase the system's adaptability through personalized rule sets that calibrate to individual user behavior, offering a user-centric AI experience.
Our research underscores MIRA's ability to deliver both high interpretability and performance and emphasizes the potential for broader adoption of interpretable AI in safety-critical applications.
- Score: 2.99664686845172
- License:
- Abstract: The increasing demand in artificial intelligence (AI) for models that are both effective and explainable is critical in domains where safety and trust are paramount. In this study, we introduce MIRA, a transparent and interpretable multi-class rule-based algorithm tailored for radar-based gesture detection. Addressing the critical need for understandable AI, MIRA enhances user trust by providing insight into its decision-making process. We showcase the system's adaptability through personalized rule sets that calibrate to individual user behavior, offering a user-centric AI experience. Alongside presenting a novel multi-class classification architecture, we share an extensive frequency-modulated continuous wave radar gesture dataset and evidence of the superior interpretability of our system through comparative analyses. Our research underscores MIRA's ability to deliver both high interpretability and performance and emphasizes the potential for broader adoption of interpretable AI in safety-critical applications.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Graph-Based Multi-Modal Sensor Fusion for Autonomous Driving [3.770103075126785]
We introduce a novel approach to multi-modal sensor fusion, focusing on developing a graph-based state representation.
We present a Sensor-Agnostic Graph-Aware Kalman Filter, the first online state estimation technique designed to fuse multi-modal graphs.
We validate the effectiveness of our proposed framework through extensive experiments conducted on both synthetic and real-world driving datasets.
arXiv Detail & Related papers (2024-11-06T06:58:17Z) - XAI-based Feature Ensemble for Enhanced Anomaly Detection in Autonomous Driving Systems [1.3022753212679383]
This paper proposes a novel feature ensemble framework that integrates multiple Explainable AI (XAI) methods.
By fusing top features identified by these XAI methods across six diverse AI models, the framework creates a robust and comprehensive set of features critical for detecting anomalies.
Our technique demonstrates improved accuracy, robustness, and transparency of AI models, contributing to safer and more trustworthy autonomous driving systems.
arXiv Detail & Related papers (2024-10-20T14:34:48Z) - An Adaptive End-to-End IoT Security Framework Using Explainable AI and LLMs [1.9662978733004601]
This paper presents an innovative framework for real-time IoT attack detection and response that leverages Machine Learning (ML), Explainable AI (XAI), and Large Language Models (LLM)
Our end-to-end framework not only facilitates a seamless transition from model development to deployment but also represents a real-world application capability that is often lacking in existing research.
arXiv Detail & Related papers (2024-09-20T03:09:23Z) - VERA: Validation and Evaluation of Retrieval-Augmented Systems [5.709401805125129]
VERA is a framework designed to enhance the transparency and reliability of outputs from large language models (LLMs)
We show how VERA can strengthen decision-making processes and trust in AI applications.
arXiv Detail & Related papers (2024-08-16T21:59:59Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Representation Engineering: A Top-Down Approach to AI Transparency [132.0398250233924]
We identify and characterize the emerging area of representation engineering (RepE)
RepE places population-level representations, rather than neurons or circuits, at the center of analysis.
We showcase how these methods can provide traction on a wide range of safety-relevant problems.
arXiv Detail & Related papers (2023-10-02T17:59:07Z) - Joint Sensing, Communication, and AI: A Trifecta for Resilient THz User
Experiences [118.91584633024907]
A novel joint sensing, communication, and artificial intelligence (AI) framework is proposed so as to optimize extended reality (XR) experiences over terahertz (THz) wireless systems.
arXiv Detail & Related papers (2023-04-29T00:39:50Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
We introduce a simple and effective method for learning VAEs with controllable biases by using an intermediary set of latent variables.
In particular, it allows us to impose desired properties like sparsity or clustering on learned representations.
We show that this, in turn, allows InteL-VAEs to learn both better generative models and representations.
arXiv Detail & Related papers (2021-06-25T16:34:05Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z) - VATLD: A Visual Analytics System to Assess, Understand and Improve
Traffic Light Detection [15.36267013724161]
We propose a visual analytics system, VATLD, to assess, understand, and improve the accuracy and robustness of traffic light detectors in autonomous driving applications.
The disentangled representation learning extracts data semantics to augment human cognition with human-friendly visual summarization.
We also demonstrate the effectiveness of various performance improvement strategies with our visual analytics system, VATLD, and illustrate some practical implications for safety-critical applications in autonomous driving.
arXiv Detail & Related papers (2020-09-27T22:39:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.