論文の概要: Leveraging generative models to characterize the failure conditions of image classifiers
- arxiv url: http://arxiv.org/abs/2410.12814v1
- Date: Tue, 01 Oct 2024 08:52:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 06:14:44.004188
- Title: Leveraging generative models to characterize the failure conditions of image classifiers
- Title(参考訳): 画像分類器の故障条件を特徴付ける生成モデルの導入
- Authors: Adrien Le Coz, Stéphane Herbin, Faouzi Adjed,
- Abstract要約: 我々は、ジェネレーティブ・ディバイサル・ネットワーク(StyleGAN2)が利用できる高品質画像データの制御可能な分布を生成する能力を活用する。
フェール条件は、生成モデル潜在空間における強い性能劣化の方向として表現される。
- 参考スコア(独自算出の注目度): 5.018156030818883
- License:
- Abstract: We address in this work the question of identifying the failure conditions of a given image classifier. To do so, we exploit the capacity of producing controllable distributions of high quality image data made available by recent Generative Adversarial Networks (StyleGAN2): the failure conditions are expressed as directions of strong performance degradation in the generative model latent space. This strategy of analysis is used to discover corner cases that combine multiple sources of corruption, and to compare in more details the behavior of different classifiers. The directions of degradation can also be rendered visually by generating data for better interpretability. Some degradations such as image quality can affect all classes, whereas other ones such as shape are more class-specific. The approach is demonstrated on the MNIST dataset that has been completed by two sources of corruption: noise and blur, and shows a promising way to better understand and control the risks of exploiting Artificial Intelligence components for safety-critical applications.
- Abstract(参考訳): 本研究では,与えられた画像分類器の故障条件を特定する問題に対処する。
そこで本研究では,最近のジェネレーティブ・ディバイザリー・ネットワーク(StyleGAN2)による高画質画像データの制御可能な分布を生成する能力を活用し,生成モデル潜時空間における高い性能劣化の方向として故障条件を表現した。
この分析戦略は、複数の汚職源を組み合わせたコーナーケースを発見し、異なる分類器の挙動をより詳細に比較するために用いられる。
劣化の方向は、より良い解釈性のためにデータを生成することで視覚的にレンダリングすることもできる。
画像品質などの劣化はすべてのクラスに影響を与えるが、形状などの劣化はクラス固有のものである。
このアプローチは、ノイズとブラーという2つの汚職源によって完了したMNISTデータセット上で実証されており、安全クリティカルなアプリケーションのために人工知能コンポーネントを利用するリスクをよりよく理解し、制御するための有望な方法を示している。
関連論文リスト
- ExIQA: Explainable Image Quality Assessment Using Distortion Attributes [0.3683202928838613]
本稿では属性学習に基づく歪み同定のための説明可能なアプローチを提案する。
効率的なトレーニングのために,10万の画像からなるデータセットを生成する。
提案手法はPLCCとSRCCの両方で複数のデータセットにまたがるSOTA(State-of-the-art)性能を実現する。
論文 参考訳(メタデータ) (2024-09-10T20:28:14Z) - DiG-IN: Diffusion Guidance for Investigating Networks -- Uncovering Classifier Differences Neuron Visualisations and Visual Counterfactual Explanations [35.458709912618176]
ディープラーニングは、ImageNetのような複雑な画像分類タスク、予期せぬ障害モード、例えばスプリアス機能などに大きな進歩をもたらした。
安全クリティカルなタスクでは、その決定のブラックボックスの性質は問題であり、説明や少なくとも意思決定を行う方法が緊急に必要である。
本稿では,これらの問題に対して,ガイド画像生成のためのフレームワークを用いて分類器由来の目的を最適化した画像を生成する。
論文 参考訳(メタデータ) (2023-11-29T17:35:29Z) - Benchmark Generation Framework with Customizable Distortions for Image
Classifier Robustness [4.339574774938128]
本稿では,画像分類モデルのロバスト性を評価するために,逆ベンチマークを生成する新しいフレームワークを提案する。
当社のフレームワークでは,画像に最適な歪みの種類をカスタマイズすることが可能で,デプロイメントに関連する歪みに対処する上で有効である。
論文 参考訳(メタデータ) (2023-10-28T07:40:42Z) - Exploring the Robustness of Human Parsers Towards Common Corruptions [99.89886010550836]
我々は,LIP-C,ATR-C,Pascal-Person-Part-Cという3つの汚職堅牢性ベンチマークを構築し,人間の解析モデルのリスク許容度を評価する。
データ強化戦略に触発されて、一般に破損した条件下で頑健性を高めるための新しい異種強化機構を提案する。
論文 参考訳(メタデータ) (2023-09-02T13:32:14Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Diagnosing and Rectifying Vision Models using Language [31.588965563961573]
最近のコントラスト学習モデルは、強力な視覚分類器を構築するのに適した埋め込み空間を学習できることを実証している。
我々の研究は、このマルチモーダル埋め込み空間の明確な利点として、自然言語で視覚分類器を診断する能力を挙げている。
提案手法は,ハイエラーデータスライスを発見し,重要な属性を同定し,さらに好ましくないモデルの振る舞いを補正する。
論文 参考訳(メタデータ) (2023-02-08T18:59:42Z) - Robustness and invariance properties of image classifiers [8.970032486260695]
ディープニューラルネットワークは多くの画像分類タスクで印象的な結果を得た。
ディープネットワークは、多種多様なセマンティック保存画像修正に対して堅牢ではない。
画像分類器の小さなデータ分散シフトに対する堅牢性の低さは、その信頼性に関する深刻な懸念を引き起こす。
論文 参考訳(メタデータ) (2022-08-30T11:00:59Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
本稿では,弱い監督と生成的敵ネットワークを融合したモデルを提案する。
弱い監督によるラベル推定と並行して、データの離散変数をキャプチャする。
これは、弱い教師付き合成画像と擬似ラベルによるデータ拡張を可能にする最初のアプローチである。
論文 参考訳(メタデータ) (2022-03-22T20:24:21Z) - Improving robustness against common corruptions with frequency biased
models [112.65717928060195]
目に見えない画像の腐敗は 驚くほど大きなパフォーマンス低下を引き起こします
画像の破損タイプは周波数スペクトルで異なる特性を持ち、ターゲットタイプのデータ拡張の恩恵を受けます。
畳み込み特徴マップの総変動(TV)を最小限に抑え、高周波堅牢性を高める新しい正規化方式を提案する。
論文 参考訳(メタデータ) (2021-03-30T10:44:50Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
監視されていない画像強調生成ネットワーク(UEGAN)を提案する。
教師なしの方法で所望の特性を持つ画像の集合から、対応する画像と画像のマッピングを学習する。
その結果,提案モデルは画像の美的品質を効果的に向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:22:46Z) - Semi-Supervised StyleGAN for Disentanglement Learning [79.01988132442064]
現在の解離法は、いくつかの固有の制限に直面している。
半教師付き高分解能ディスタングル学習のためのStyleGANに基づく新しいアーキテクチャと損失関数を設計する。
論文 参考訳(メタデータ) (2020-03-06T22:54:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。