Advancing Spatio-temporal Storm Surge Prediction with Hierarchical Deep Neural Networks
- URL: http://arxiv.org/abs/2410.12823v1
- Date: Tue, 01 Oct 2024 15:09:40 GMT
- Title: Advancing Spatio-temporal Storm Surge Prediction with Hierarchical Deep Neural Networks
- Authors: Saeed Saviz Naeini, Reda Snaiki, Teng Wu,
- Abstract summary: Coastal regions in North America face major threats from storm surges caused by hurricanes and nor'easters.
Traditional numerical models, while accurate, are computationally expensive, limiting their practicality for real-time predictions.
This study introduces a hierarchical deep neural network (HDNN) combined with a convolutional autoencoder (CAE) to accurately and efficiently predict storm surge time series.
- Score: 1.024113475677323
- License:
- Abstract: Coastal regions in North America face major threats from storm surges caused by hurricanes and nor'easters. Traditional numerical models, while accurate, are computationally expensive, limiting their practicality for real-time predictions. Recently, deep learning techniques have been developed for efficient simulation of time-dependent storm surge. To resolve the small scales of storm surge in both time and space over a long duration and a large area, these simulations typically need to employ oversized neural networks that struggle with the accumulation of prediction errors over successive time steps. To address these challenges, this study introduces a hierarchical deep neural network (HDNN) combined with a convolutional autoencoder (CAE) to accurately and efficiently predict storm surge time series. The CAE reduces the dimensionality of storm surge data, streamlining the learning process. HDNNs then map storm parameters to the low-dimensional representation of storm surge, allowing for sequential predictions across different time scales. Specifically, the current-level neural network is utilized to predict future states with a relatively large time step, which are passed as inputs to the next-level neural network for smaller time-step predictions. This process continues sequentially for all time steps. The results from different-level neural networks across various time steps are then stacked to acquire the entire time series of storm surge. The simulated low-dimensional representations are finally decoded back into storm surge time series. The proposed model was trained and tested using synthetic data from the North Atlantic Comprehensive Coastal Study. Results demonstrate its excellent performance to effectively handle high-dimensional surge data while mitigating the accumulation of prediction errors over time, making it a promising tool for advancing storm surge prediction.
Related papers
- Temporal Convolution Derived Multi-Layered Reservoir Computing [5.261277318790788]
We propose a new mapping of input data into the reservoir's state space.
We incorporate this method in two novel network architectures increasing parallelizability, depth and predictive capabilities of the neural network.
For the chaotic time series, we observe an error reduction of up to $85.45%$ compared to Echo State Networks and $90.72%$ compared to Gated Recurrent Units.
arXiv Detail & Related papers (2024-07-09T11:40:46Z) - TensorFlow Chaotic Prediction and Blow Up [0.0]
We aim to predict the chaotic dynamics of a high-dimensional non-linear system.
While our results are encouraging, we also indirectly discovered an unexpected and undesirable behavior of a library.
More specifically, the longer term prediction of the system's chaotic behavior quickly deteriorates and blows up due to nondeterministic behavior of the library.
arXiv Detail & Related papers (2023-09-14T06:22:48Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction [77.57991021445959]
We propose a neural layer based on the ideas of temporal attention and multi-head attention to extend the capability of the underlying neural network.
The effectiveness of our approach is validated using large-scale limit-order book market data.
arXiv Detail & Related papers (2022-01-14T14:02:19Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - A computationally efficient neural network for predicting weather
forecast probabilities [0.0]
We take the novel approach of using a neural network to predict probability density functions rather than a single output value.
This enables the calculation of both uncertainty and skill metrics for the neural network predictions.
This approach is purely data-driven and the neural network is trained on the WeatherBench dataset.
arXiv Detail & Related papers (2021-03-26T12:28:15Z) - Prediction of Bayesian Intervals for Tropical Storms [1.7132914341329848]
Tropical storms are capable of causing severe damage, so accurately predicting their trajectories can bring significant benefits to cities and lives.
We have developed improved methods and generalized the approach to predict Bayesian intervals in addition to simple point estimates.
Our results show how neural network dropout values affect predictions and intervals.
arXiv Detail & Related papers (2020-03-10T22:31:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.