GCM-Net: Graph-enhanced Cross-Modal Infusion with a Metaheuristic-Driven Network for Video Sentiment and Emotion Analysis
- URL: http://arxiv.org/abs/2410.12828v1
- Date: Wed, 02 Oct 2024 10:07:48 GMT
- Title: GCM-Net: Graph-enhanced Cross-Modal Infusion with a Metaheuristic-Driven Network for Video Sentiment and Emotion Analysis
- Authors: Prasad Chaudhari, Aman Kumar, Chandravardhan Singh Raghaw, Mohammad Zia Ur Rehman, Nagendra Kumar,
- Abstract summary: This paper presents a novel framework that leverages the multi-modal contextual information from utterances and applies metaheuristic algorithms to learn for utterance-level sentiment and emotion prediction.
To show the effectiveness of our approach, we have conducted extensive evaluations on three prominent multimodal benchmark datasets.
- Score: 2.012311338995539
- License:
- Abstract: Sentiment analysis and emotion recognition in videos are challenging tasks, given the diversity and complexity of the information conveyed in different modalities. Developing a highly competent framework that effectively addresses the distinct characteristics across various modalities is a primary concern in this domain. Previous studies on combined multimodal sentiment and emotion analysis often overlooked effective fusion for modality integration, intermodal contextual congruity, optimizing concatenated feature spaces, leading to suboptimal architecture. This paper presents a novel framework that leverages the multi-modal contextual information from utterances and applies metaheuristic algorithms to learn the contributing features for utterance-level sentiment and emotion prediction. Our Graph-enhanced Cross-Modal Infusion with a Metaheuristic-Driven Network (GCM-Net) integrates graph sampling and aggregation to recalibrate the modality features for video sentiment and emotion prediction. GCM-Net includes a cross-modal attention module determining intermodal interactions and utterance relevance. A harmonic optimization module employing a metaheuristic algorithm combines attended features, allowing for handling both single and multi-utterance inputs. To show the effectiveness of our approach, we have conducted extensive evaluations on three prominent multi-modal benchmark datasets, CMU MOSI, CMU MOSEI, and IEMOCAP. The experimental results demonstrate the efficacy of our proposed approach, showcasing accuracies of 91.56% and 86.95% for sentiment analysis on MOSI and MOSEI datasets. We have performed emotion analysis for the IEMOCAP dataset procuring an accuracy of 85.66% which signifies substantial performance enhancements over existing methods.
Related papers
- Towards a Robust Framework for Multimodal Hate Detection: A Study on Video vs. Image-based Content [7.5253808885104325]
Social media platforms enable the propagation of hateful content across different modalities.
Recent approaches have shown promise in handling individual modalities, but their effectiveness across different modality combinations remains unexplored.
This paper presents a systematic analysis of fusion-based approaches for multimodal hate detection, focusing on their performance across video and image-based content.
arXiv Detail & Related papers (2025-02-11T00:07:40Z) - Dynamic Multimodal Sentiment Analysis: Leveraging Cross-Modal Attention for Enabled Classification [0.0]
multimodal sentiment analysis model integrates text, audio, and visual data to enhance sentiment classification.
Study evaluates three feature fusion strategies -- late stage fusion, early stage fusion, and multi-headed attention.
Findings suggest that integrating modalities early in the process enhances sentiment classification, while attention mechanisms may have limited impact within the current framework.
arXiv Detail & Related papers (2025-01-14T12:54:19Z) - Effective Context Modeling Framework for Emotion Recognition in Conversations [2.7175580940471913]
Emotion Recognition in Conversations (ERC) facilitates a deeper understanding of the emotions conveyed by speakers in each utterance within a conversation.
Recent Graph Neural Networks (GNNs) have demonstrated their strengths in capturing data relationships.
We propose ConxGNN, a novel GNN-based framework designed to capture contextual information in conversations.
arXiv Detail & Related papers (2024-12-21T02:22:06Z) - Multimodal Sentiment Analysis Based on BERT and ResNet [0.0]
multimodal sentiment analysis framework combining BERT and ResNet was proposed.
BERT has shown strong text representation ability in natural language processing, and ResNet has excellent image feature extraction performance in the field of computer vision.
Experimental results on the public dataset MAVA-single show that compared with the single-modal models that only use BERT or ResNet, the proposed multi-modal model improves the accuracy and F1 score, reaching the best accuracy of 74.5%.
arXiv Detail & Related papers (2024-12-04T15:55:20Z) - Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
Single source domain generalization holds promise for more reliable and consistent image segmentation across real-world clinical settings.
We propose an approach that explicitly leverages textual information by incorporating a contrastive learning mechanism guided by the text encoder features.
Our approach achieves favorable performance against existing methods in literature.
arXiv Detail & Related papers (2024-04-01T17:48:15Z) - Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
Multimodal emotion recognition (MMER) systems typically outperform unimodal systems.
This paper proposes an MMER method that relies on a joint multimodal transformer (JMT) for fusion with key-based cross-attention.
arXiv Detail & Related papers (2024-03-15T17:23:38Z) - From Text to Pixels: A Context-Aware Semantic Synergy Solution for
Infrared and Visible Image Fusion [66.33467192279514]
We introduce a text-guided multi-modality image fusion method that leverages the high-level semantics from textual descriptions to integrate semantics from infrared and visible images.
Our method not only produces visually superior fusion results but also achieves a higher detection mAP over existing methods, achieving state-of-the-art results.
arXiv Detail & Related papers (2023-12-31T08:13:47Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
Human-Object Interaction (HOI) detection is a challenging computer vision task.
We present a framework that enhances HOI detection by incorporating structured text knowledge.
arXiv Detail & Related papers (2023-07-25T14:20:52Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - Fusion with Hierarchical Graphs for Mulitmodal Emotion Recognition [7.147235324895931]
This paper proposes a novel hierarchical graph network (HFGCN) model that learns more informative multimodal representations.
Specifically, the proposed model fuses multimodality inputs using a two-stage graph construction approach and encodes the modality dependencies into the conversation representation.
Experiments showed the effectiveness of our proposed model for more accurate AER, which yielded state-of-the-art results on two public datasets.
arXiv Detail & Related papers (2021-09-15T08:21:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.