UniAutoML: A Human-Centered Framework for Unified Discriminative and Generative AutoML with Large Language Models
- URL: http://arxiv.org/abs/2410.12841v2
- Date: Fri, 18 Oct 2024 03:03:01 GMT
- Title: UniAutoML: A Human-Centered Framework for Unified Discriminative and Generative AutoML with Large Language Models
- Authors: Jiayi Guo, Zan Chen, Yingrui Ji, Liyun Zhang, Daqin Luo, Zhigang Li, Yiqin Shen,
- Abstract summary: We introduce UniAutoML, a human-centered AutoML framework that unifies AutoML for both discriminative and generative tasks.
The human-centered design of UniAutoML innovatively features a conversational user interface (CUI) that facilitates natural language interactions.
This design enhances transparency and user control throughout the AutoML training process, allowing users to seamlessly break down or modify the model being trained.
- Score: 5.725785427377439
- License:
- Abstract: Automated Machine Learning (AutoML) has simplified complex ML processes such as data pre-processing, model selection, and hyper-parameter searching. However, traditional AutoML frameworks focus solely on discriminative tasks, often falling short in tackling AutoML for generative models. Additionally, these frameworks lack interpretability and user engagement during the training process, primarily due to the absence of human-centered design. It leads to a lack of transparency in final decision-making and limited user control, potentially reducing trust and adoption of AutoML methods. To address these limitations, we introduce UniAutoML, a human-centered AutoML framework that leverages Large Language Models (LLMs) to unify AutoML for both discriminative (e.g., Transformers and CNNs for classification or regression tasks) and generative tasks (e.g., fine-tuning diffusion models or LLMs). The human-centered design of UniAutoML innovatively features a conversational user interface (CUI) that facilitates natural language interactions, providing users with real-time guidance, feedback, and progress updates for better interpretability. This design enhances transparency and user control throughout the AutoML training process, allowing users to seamlessly break down or modify the model being trained. To mitigate potential risks associated with LLM generated content, UniAutoML incorporates a safety guardline that filters inputs and censors outputs. We evaluated UniAutoML's performance and usability through experiments on eight diverse datasets and user studies involving 25 participants, demonstrating that UniAutoML not only enhances performance but also improves user control and trust. Our human-centered design bridges the gap between AutoML capabilities and user understanding, making ML more accessible to a broader audience.
Related papers
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - AutoM3L: An Automated Multimodal Machine Learning Framework with Large Language Models [6.496539724366041]
We introduce AutoM3L, an innovative Automated Multimodal Machine Learning framework.
AutoM3L comprehends data modalities and selects appropriate models based on user requirements.
We evaluate the performance of AutoM3L on six diverse multimodal datasets.
arXiv Detail & Related papers (2024-08-01T16:01:51Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
We introduce the framework of verbalized machine learning (VML)
VML constrains the parameter space to be human-interpretable natural language.
We empirically verify the effectiveness of VML, and hope that VML can serve as a stepping stone to stronger interpretability.
arXiv Detail & Related papers (2024-06-06T17:59:56Z) - Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
Automated machine learning (AutoML) was formed around the fundamental objectives of automatically and efficiently configuring machine learning (ML)
We argue that a key to unlocking AutoML's full potential lies in addressing the currently underexplored aspect of user interaction with AutoML systems.
arXiv Detail & Related papers (2024-06-05T15:05:24Z) - A Multivocal Literature Review on the Benefits and Limitations of
Automated Machine Learning Tools [9.69672653683112]
We conducted a multivocal literature review, which allowed us to identify 54 sources from the academic literature and 108 sources from the grey literature reporting on AutoML benefits and limitations.
Concerning the benefits, we highlight that AutoML tools can help streamline the core steps of ML.
We highlight several limitations that may represent obstacles to the widespread adoption of AutoML.
arXiv Detail & Related papers (2024-01-21T01:39:39Z) - Can Fairness be Automated? Guidelines and Opportunities for
Fairness-aware AutoML [52.86328317233883]
We present a comprehensive overview of different ways in which fairness-related harm can arise.
We highlight several open technical challenges for future work in this direction.
arXiv Detail & Related papers (2023-03-15T09:40:08Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - AutoML in The Wild: Obstacles, Workarounds, and Expectations [37.813441975457735]
This study focuses on understanding the limitations of AutoML encountered by users in their real-world practices.
Our findings reveal that users actively exercise user agency to overcome three major challenges arising from customizability, transparency, and privacy.
arXiv Detail & Related papers (2023-02-21T17:06:46Z) - Towards Green Automated Machine Learning: Status Quo and Future
Directions [71.86820260846369]
AutoML is being criticised for its high resource consumption.
This paper proposes Green AutoML, a paradigm to make the whole AutoML process more environmentally friendly.
arXiv Detail & Related papers (2021-11-10T18:57:27Z) - Automatic Componentwise Boosting: An Interpretable AutoML System [1.1709030738577393]
We propose an AutoML system that constructs an interpretable additive model that can be fitted using a highly scalable componentwise boosting algorithm.
Our system provides tools for easy model interpretation such as visualizing partial effects and pairwise interactions.
Despite its restriction to an interpretable model space, our system is competitive in terms of predictive performance on most data sets.
arXiv Detail & Related papers (2021-09-12T18:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.