A Two-Model Approach for Humour Style Recognition
- URL: http://arxiv.org/abs/2410.12842v1
- Date: Wed, 09 Oct 2024 18:25:07 GMT
- Title: A Two-Model Approach for Humour Style Recognition
- Authors: Mary Ogbuka Kenneth, Foaad Khosmood, Abbas Edalat,
- Abstract summary: Recognising different humour styles poses challenges due to the lack of established datasets and machine learning (ML) models.
We present a new text dataset for humour style recognition, comprising 1463 instances across four styles.
We propose a two-model approach to enhance humour style recognition, particularly in distinguishing between affiliative and aggressive styles.
- Score: 0.21847754147782888
- License:
- Abstract: Humour, a fundamental aspect of human communication, manifests itself in various styles that significantly impact social interactions and mental health. Recognising different humour styles poses challenges due to the lack of established datasets and machine learning (ML) models. To address this gap, we present a new text dataset for humour style recognition, comprising 1463 instances across four styles (self-enhancing, self-deprecating, affiliative, and aggressive) and non-humorous text, with lengths ranging from 4 to 229 words. Our research employs various computational methods, including classic machine learning classifiers, text embedding models, and DistilBERT, to establish baseline performance. Additionally, we propose a two-model approach to enhance humour style recognition, particularly in distinguishing between affiliative and aggressive styles. Our method demonstrates an 11.61% improvement in f1-score for affiliative humour classification, with consistent improvements in the 14 models tested. Our findings contribute to the computational analysis of humour in text, offering new tools for studying humour in literature, social media, and other textual sources.
Related papers
- DiffusionPen: Towards Controlling the Style of Handwritten Text Generation [7.398476020996681]
DiffusionPen (DiffPen) is a 5-shot style handwritten text generation approach based on Latent Diffusion Models.
Our approach captures both textual and stylistic characteristics of seen and unseen words and styles, generating realistic handwritten samples.
Our method outperforms existing methods qualitatively and quantitatively, and its additional generated data can improve the performance of Handwriting Text Recognition (HTR) systems.
arXiv Detail & Related papers (2024-09-09T20:58:25Z) - Systematic Literature Review: Computational Approaches for Humour Style
Classification [0.2455468619225742]
We study the landscape of computational techniques applied to binary humour and sarcasm recognition.
We identify potential research gaps and outlined promising directions.
The SLR provides access to existing datasets related to humour and sarcasm, facilitating the work of future researchers.
arXiv Detail & Related papers (2024-01-30T16:21:47Z) - Unsupervised Neural Stylistic Text Generation using Transfer learning
and Adapters [66.17039929803933]
We propose a novel transfer learning framework which updates only $0.3%$ of model parameters to learn style specific attributes for response generation.
We learn style specific attributes from the PERSONALITY-CAPTIONS dataset.
arXiv Detail & Related papers (2022-10-07T00:09:22Z) - Towards Multimodal Prediction of Spontaneous Humour: A Novel Dataset and First Results [84.37263300062597]
Humor is a substantial element of human social behavior, affect, and cognition.
Current methods of humor detection have been exclusively based on staged data, making them inadequate for "real-world" applications.
We contribute to addressing this deficiency by introducing the novel Passau-Spontaneous Football Coach Humor dataset, comprising about 11 hours of recordings.
arXiv Detail & Related papers (2022-09-28T17:36:47Z) - Reading and Writing: Discriminative and Generative Modeling for
Self-Supervised Text Recognition [101.60244147302197]
We introduce contrastive learning and masked image modeling to learn discrimination and generation of text images.
Our method outperforms previous self-supervised text recognition methods by 10.2%-20.2% on irregular scene text recognition datasets.
Our proposed text recognizer exceeds previous state-of-the-art text recognition methods by averagely 5.3% on 11 benchmarks, with similar model size.
arXiv Detail & Related papers (2022-07-01T03:50:26Z) - Generating More Pertinent Captions by Leveraging Semantics and Style on
Multi-Source Datasets [56.018551958004814]
This paper addresses the task of generating fluent descriptions by training on a non-uniform combination of data sources.
Large-scale datasets with noisy image-text pairs provide a sub-optimal source of supervision.
We propose to leverage and separate semantics and descriptive style through the incorporation of a style token and keywords extracted through a retrieval component.
arXiv Detail & Related papers (2021-11-24T19:00:05Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - Improving Generation and Evaluation of Visual Stories via Semantic
Consistency [72.00815192668193]
Given a series of natural language captions, an agent must generate a sequence of images that correspond to the captions.
Prior work has introduced recurrent generative models which outperform synthesis text-to-image models on this task.
We present a number of improvements to prior modeling approaches, including the addition of a dual learning framework.
arXiv Detail & Related papers (2021-05-20T20:42:42Z) - Advancing Humor-Focused Sentiment Analysis through Improved
Contextualized Embeddings and Model Architecture [0.0]
Humor allows us to express thoughts and feelings conveniently and effectively.
As language models become ubiquitous through virtual-assistants and IOT devices, the need to develop humor-aware models rises exponentially.
arXiv Detail & Related papers (2020-11-23T22:30:32Z) - ColBERT: Using BERT Sentence Embedding in Parallel Neural Networks for
Computational Humor [0.0]
We propose a novel approach for detecting and rating humor in short texts based on a popular linguistic theory of humor.
The proposed technical method initiates by separating sentences of the given text and utilizing the BERT model to generate embeddings for each one.
We accompany the paper with a novel dataset for humor detection consisting of 200,000 formal short texts.
The proposed model obtained F1 scores of 0.982 and 0.869 in the humor detection experiments which outperform general and state-of-the-art models.
arXiv Detail & Related papers (2020-04-27T13:10:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.