論文の概要: LLMD: A Large Language Model for Interpreting Longitudinal Medical Records
- arxiv url: http://arxiv.org/abs/2410.12860v1
- Date: Fri, 11 Oct 2024 20:55:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:22:12.780036
- Title: LLMD: A Large Language Model for Interpreting Longitudinal Medical Records
- Title(参考訳): LLMD: 縦断医療記録の解釈のための大規模言語モデル
- Authors: Robert Porter, Adam Diehl, Benjamin Pastel, J. Henry Hinnefeld, Lawson Nerenberg, Pye Maung, Sebastien Kerbrat, Gillian Hanson, Troy Astorino, Stephen J. Tarsa,
- Abstract要約: 本稿では,患者の医療履歴を医療記録に基づいて分析する大規模言語モデルを提案する。
LLMDはドメイン知識とともに、時間と施設間で収集された大量のレコードのコーパスで訓練されている。
このアプローチは患者の健康を正確に表現するために重要であり、知識だけで訓練されたモデルよりも独特なアドバンテージを持っている。
- 参考スコア(独自算出の注目度): 0.044940580193534
- License:
- Abstract: We introduce LLMD, a large language model designed to analyze a patient's medical history based on their medical records. Along with domain knowledge, LLMD is trained on a large corpus of records collected over time and across facilities, as well as tasks and labels that make nuanced connections among them. This approach is critical to an accurate picture of patient health, and has distinctive advantages over models trained on knowledge alone, unlabeled records, structured EHR data, or records from a single health system. The recipe for LLMD continues pretraining a foundational model on both domain knowledge and the contents of millions of records. These span an average of 10 years of care and as many as 140 care sites per patient. LLMD is then instruction fine-tuned on structuring and abstraction tasks. The former jointly identify and normalize document metadata, provenance information, clinical named-entities, and ontology mappings, while the latter roll these into higher-level representations, such a continuous era of time a patient was on a medication. LLMD is deployed within a layered validation system that includes continual random audits and review by experts, e.g. based on uncertainty, disease-specific rules, or use-case. LLMD exhibits large gains over both more-powerful generalized models and domain-specific models. On medical knowledge benchmarks, LLMD-8B achieves state of the art accuracy on PubMedQA text responses, besting orders-of-magnitude larger models. On production tasks, we show that LLMD significantly outperforms all other models evaluated, and among alternatives, large general purpose LLMs like GPT-4o are more accurate than models emphasizing medical knowledge. We find strong evidence that accuracy on today's medical benchmarks is not the most significant factor when analyzing real-world patient data, an insight with implications for future medical LLMs.'
- Abstract(参考訳): LLMDは患者の医療履歴を医療記録に基づいて分析するための言語モデルである。
LLMDは、ドメイン知識に加えて、時間と施設間で収集された大量のレコードのコーパスと、それらの間を行き来するタスクやラベルで訓練されている。
このアプローチは患者の健康を正確に表現するために重要であり、知識だけで訓練されたモデル、ラベルのない記録、構造化されたEHRデータ、単一の健康システムからの記録よりも顕著な優位性を持っている。
LLMDのレシピは、ドメイン知識と数百万のレコードの内容の両方に関する基礎モデルを事前訓練し続けている。
これらは平均して10年のケア期間と、患者1人当たり140のケア施設にまたがる。
LLMDは構造化タスクと抽象化タスクに微調整される。
前者は、文書のメタデータ、出所情報、臨床名義、オントロジーマッピングを共同で特定し、標準化し、後者は、患者が薬を服用していたような、より高いレベルの表現にそれらをロールロールする。
LLMDは、連続的なランダム監査と専門家によるレビューを含む階層化された検証システムにデプロイされる。
LLMDは、より強力な一般化モデルとドメイン固有モデルの両方に対して大きな進歩を示している。
医学知識のベンチマークでは、LLMD-8BはPubMedQAテキスト応答の最先端の精度を達成し、より大きなモデルのオーダーを最適化する。
GPT-4o のような大規模汎用 LLM は,医学的知識を重視したモデルよりも精度が高い。
今日の医療ベンチマークの精度が、現実の患者データを分析する上で最も重要な要因ではないという強い証拠が得られます。
>
関連論文リスト
- Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
MedS-Benchは大規模言語モデル(LLM)の性能を臨床的に評価するためのベンチマークである。
MedS-Benchは、臨床報告の要約、治療勧告、診断、名前付きエンティティ認識、医療概念説明を含む、11のハイレベルな臨床タスクにまたがる。
MedS-Insは58の医療指向言語コーパスで構成され、112のタスクで1350万のサンプルを収集している。
論文 参考訳(メタデータ) (2024-08-22T17:01:34Z) - When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
大規模言語モデルの最後の隠れ状態からベクター表現が医療診断および予後に有効であることを示す。
我々は,異常な生理的データを表すため,ゼロショット設定の命令調整LDMに着目し,それらのユーティリティを特徴抽出器として評価する。
医学MLタスクでは生データの特徴が依然として有効であることが示唆されているが、ゼロショットLSM埋め込みは競争力のある結果を示している。
論文 参考訳(メタデータ) (2024-08-15T03:56:40Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
LVLM(Large Vision-Language Model)は、画像、テキスト、生理学的信号などの多様なデータタイプを扱うことができる。
GMAI-MMBenchは、よく分類されたデータ構造と、これまででもっとも包括的な一般医療用AIベンチマークである。
38の医療画像モダリティ、18の臨床関連タスク、18の部門、視覚質問回答(VQA)フォーマットの4つの知覚的粒度からなる284のデータセットで構成されている。
論文 参考訳(メタデータ) (2024-08-06T17:59:21Z) - Fine-Tuning Medical Language Models for Enhanced Long-Contextual Understanding and Domain Expertise [2.1869349221557814]
大規模言語モデル(LLM)は様々な専門分野に広く応用されている。
特定のドメイン知識の改善にもかかわらず,長期理解における医学的LLMの性能は著しく低下している。
論文 参考訳(メタデータ) (2024-07-16T09:37:20Z) - SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
大規模言語モデルは、一般的な医学的知識をエンコードする能力において有望な結果を示している。
内科的知識を活用しててててんかんの診断を行う技術について検討した。
論文 参考訳(メタデータ) (2024-07-03T11:02:12Z) - MedExQA: Medical Question Answering Benchmark with Multiple Explanations [2.2246416434538308]
本稿では,MedExQAについて紹介する。MedExQAは,医学的知識に関する大規模言語モデル (LLM) の理解を説明を通じて評価するための,医学的質問応答の新しいベンチマークである。
5つの異なる医療専門分野のデータセットを構築することで、現在の医療QAベンチマークの大きなギャップに対処する。
本研究は、医学LLMにおける説明可能性の重要性を強調し、分類精度以上のモデルを評価する効果的な方法論を提案し、特定の分野である音声言語病理学に光を当てる。
論文 参考訳(メタデータ) (2024-06-10T14:47:04Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
医療マルチモーダル大言語モデル(Med-MLLM)を評価するための新しいベンチマークであるAsclepiusを紹介する。
Asclepiusは、異なる医療専門性と異なる診断能力の観点から、モデル能力の厳密かつ包括的に評価する。
また、6つのMed-MLLMの詳細な分析を行い、5人の専門家と比較した。
論文 参考訳(メタデータ) (2024-02-17T08:04:23Z) - REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records
Analysis via Large Language Models [19.62552013839689]
既存のモデルは、しばしば臨床上の課題に医学的文脈を欠いているため、外部知識の組み入れが促される。
本稿では、マルチモーダルEHR表現を強化するためのRAG(Retrieval-Augmented Generation)駆動フレームワークREALMを提案する。
MIMIC-III 死亡率と可読化タスクに関する実験は,ベースラインよりもREALM フレームワークの優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-10T18:27:28Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
大規模言語モデル(LLM)は、自然言語理解において顕著な能力を示した。
LLMは、ドメイン固有の知識が不足しているため、医学的応用のような正確性を必要とする領域で苦労している。
PMC-LLaMAと呼ばれる医療応用に特化した強力なオープンソース言語モデルの構築手順について述べる。
論文 参考訳(メタデータ) (2023-04-27T18:29:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。