論文の概要: REFINE on Scarce Data: Retrieval Enhancement through Fine-Tuning via Model Fusion of Embedding Models
- arxiv url: http://arxiv.org/abs/2410.12890v1
- Date: Wed, 16 Oct 2024 08:43:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:19:08.292121
- Title: REFINE on Scarce Data: Retrieval Enhancement through Fine-Tuning via Model Fusion of Embedding Models
- Title(参考訳): REFINE on Scarce Data: 埋め込みモデルのモデル融合による微調整による検索強化
- Authors: Ambuje Gupta, Mrinal Rawat, Andreas Stolcke, Roberto Pieraccini,
- Abstract要約: 検索拡張生成(RAG)パイプラインは、質問応答(QA)などのタスクで一般的に使用される。
本稿では,利用可能な文書から合成データを生成する新しい手法であるREFINEを提案する。
- 参考スコア(独自算出の注目度): 14.023953508288628
- License:
- Abstract: Retrieval augmented generation (RAG) pipelines are commonly used in tasks such as question-answering (QA), relying on retrieving relevant documents from a vector store computed using a pretrained embedding model. However, if the retrieved context is inaccurate, the answers generated using the large language model (LLM) may contain errors or hallucinations. Although pretrained embedding models have advanced, adapting them to new domains remains challenging. Fine-tuning is a potential solution, but industry settings often lack the necessary fine-tuning data. To address these challenges, we propose REFINE, a novel technique that generates synthetic data from available documents and then uses a model fusion approach to fine-tune embeddings for improved retrieval performance in new domains, while preserving out-of-domain capability. We conducted experiments on the two public datasets: SQUAD and RAG-12000 and a proprietary TOURISM dataset. Results demonstrate that even the standard fine-tuning with the proposed data augmentation technique outperforms the vanilla pretrained model. Furthermore, when combined with model fusion, the proposed approach achieves superior performance, with a 5.76% improvement in recall on the TOURISM dataset, and 6.58 % and 0.32% enhancement on SQUAD and RAG-12000 respectively.
- Abstract(参考訳): 検索拡張生成(RAG)パイプラインは、事前訓練された埋め込みモデルを用いて計算されたベクトルストアから関連文書を取得することに依存する質問回答(QA)などのタスクで一般的に使用される。
しかし、検索された文脈が不正確な場合、大きな言語モデル(LLM)を用いて生成された回答には誤りや幻覚が含まれている可能性がある。
事前訓練された埋め込みモデルは進歩しているが、それらを新しいドメインに適用することは依然として困難である。
微調整は潜在的な解決策だが、業界設定には必要な微調整データがないことが多い。
これらの課題に対処するために,利用可能な文書から合成データを生成する新しい手法であるREFINEを提案する。
我々は、SQUADとRAG-12000と独自のTOURISMデータセットの2つの公開データセットについて実験を行った。
その結果,提案手法による標準微調整でさえ,バニラ事前学習モデルよりも優れた性能を示した。
さらに,モデル融合と組み合わせることで,TOURISMデータセットのリコールが5.76%向上し,SQUADとRAG-12000では6.58%,0.32%向上した。
関連論文リスト
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Auto-GDA: Automatic Domain Adaptation for Efficient Grounding Verification in Retrieval Augmented Generation [13.120801609024147]
検索拡張生成(RAG)は,大規模言語モデル(LLM)出力の現実性を高めることが示されている。
RAG入力は、NLIモデルのトレーニングに使用されるほとんどのデータセットよりも複雑である。
教師なしドメイン適応を実現するために自動生成ドメイン適応(Auto-GDA)を導入する。
論文 参考訳(メタデータ) (2024-10-04T14:21:27Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Crafting Efficient Fine-Tuning Strategies for Large Language Models [2.633490094119608]
200サンプル未満の細調整された大型言語モデル(LLM)は、製品属性抽出タスクにおいて、モデル精度を70%から88%に向上させることができる。
トレーニング時間全体の20%のモデルを評価するベイズハイパーパラメータ最適化法は,最終的なモデル性能と強く相関する。
このアプローチにより、独立したテストセットで評価すると、ベースラインモデルよりも精度が2%向上した。
論文 参考訳(メタデータ) (2024-07-18T21:36:00Z) - Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models [0.8399688944263842]
大きな言語モデル(LLM)は、入力クエリから人間のようなテキストを理解し、生成する能力を持つ。
本研究では、この概念を、レトリーバル拡張生成(RAG)パイプライン内のLLMの統合に拡張する。
データ抽出と文脈理解における微調整がLLMの能力に与える影響を評価する。
論文 参考訳(メタデータ) (2024-06-17T04:35:17Z) - Noisy Self-Training with Synthetic Queries for Dense Retrieval [49.49928764695172]
合成クエリと組み合わせた,ノイズの多い自己学習フレームワークを提案する。
実験結果から,本手法は既存手法よりも一貫した改善が得られた。
我々の手法はデータ効率が良く、競争のベースラインより優れています。
論文 参考訳(メタデータ) (2023-11-27T06:19:50Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
本研究では,事前学習損失,教師付きデータ量,拡張データ量が教師付きLDMの推論性能に与える影響について検討する。
複数のモデルからの拒絶サンプルは、LLaMA-7BをGSM8Kの49.3%の精度に押し上げ、監督された微調整(SFT)の精度を35.9%上回る結果となった。
論文 参考訳(メタデータ) (2023-08-03T15:34:01Z) - Comparison of Transfer Learning based Additive Manufacturing Models via
A Case Study [3.759936323189418]
本稿では,金属AM製品に関するオープンソースデータセットに基づくケーススタディについて述べる。
5つのTL手法が決定木回帰(DTR)と人工知能ニューラルネットワーク(ANN)と統合され、6つのTLベースモデルが構築される。
これらの比較は応用TL法の性能を定量化するために用いられ、類似性、トレーニングデータサイズ、データ前処理の観点から議論される。
論文 参考訳(メタデータ) (2023-05-17T00:29:25Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Exposing Shallow Heuristics of Relation Extraction Models with Challenge
Data [49.378860065474875]
我々は、TACREDで訓練されたSOTA関係抽出(RE)モデルの故障モードを同定する。
トレーニングの例として、いくつかの課題データを追加することで、モデルのパフォーマンスが向上する。
論文 参考訳(メタデータ) (2020-10-07T21:17:25Z) - Beat the AI: Investigating Adversarial Human Annotation for Reading
Comprehension [27.538957000237176]
人間は、モデルが正しい答えに失敗するように、逆さまに質問を作成する。
アノテーションループでは,より強力なモデルで36,000のサンプルを収集する。
その結果,非対向的なサンプルの学習は,非対向的なデータセットに強い一般化をもたらすことがわかった。
より強力なモデルは、より弱いループモデルで収集されたデータセットから学習できることが分かっています。
論文 参考訳(メタデータ) (2020-02-02T00:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。