論文の概要: Long-Tailed Backdoor Attack Using Dynamic Data Augmentation Operations
- arxiv url: http://arxiv.org/abs/2410.12955v1
- Date: Wed, 16 Oct 2024 18:44:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:23:11.268988
- Title: Long-Tailed Backdoor Attack Using Dynamic Data Augmentation Operations
- Title(参考訳): 動的データ拡張操作による長期後方攻撃
- Authors: Lu Pang, Tao Sun, Weimin Lyu, Haibin Ling, Chao Chen,
- Abstract要約: 既存のバックドア攻撃は主にバランスの取れたデータセットに焦点を当てている。
動的データ拡張操作(D$2$AO)という効果的なバックドア攻撃を提案する。
本手法は,クリーンな精度を維持しつつ,最先端の攻撃性能を実現することができる。
- 参考スコア(独自算出の注目度): 50.1394620328318
- License:
- Abstract: Recently, backdoor attack has become an increasing security threat to deep neural networks and drawn the attention of researchers. Backdoor attacks exploit vulnerabilities in third-party pretrained models during the training phase, enabling them to behave normally for clean samples and mispredict for samples with specific triggers. Existing backdoor attacks mainly focus on balanced datasets. However, real-world datasets often follow long-tailed distributions. In this paper, for the first time, we explore backdoor attack on such datasets. Specifically, we first analyze the influence of data imbalance on backdoor attack. Based on our analysis, we propose an effective backdoor attack named Dynamic Data Augmentation Operation (D$^2$AO). We design D$^2$AO selectors to select operations depending jointly on the class, sample type (clean vs. backdoored) and sample features. Meanwhile, we develop a trigger generator to generate sample-specific triggers. Through simultaneous optimization of the backdoored model and trigger generator, guided by dynamic data augmentation operation selectors, we achieve significant advancements. Extensive experiments demonstrate that our method can achieve the state-of-the-art attack performance while preserving the clean accuracy.
- Abstract(参考訳): 近年、バックドア攻撃はディープニューラルネットワークに対するセキュリティ上の脅威となり、研究者の注目を集めている。
バックドア攻撃は、トレーニングフェーズ中にサードパーティの事前トレーニングされたモデルの脆弱性を悪用し、クリーンサンプルとして正常に動作し、特定のトリガを持つサンプルを誤予測することを可能にする。
既存のバックドア攻撃は主にバランスの取れたデータセットに焦点を当てている。
しかし、現実世界のデータセットはしばしば長い尾の分布に従う。
本稿では,そのようなデータセットに対するバックドア攻撃を初めて検討する。
具体的には、バックドア攻撃に対するデータ不均衡の影響をまず分析する。
本研究では,動的データ拡張操作(D$^2$AO)と呼ばれる効果的なバックドア攻撃を提案する。
D$^2$AOセレクタを設計し、クラス、サンプルタイプ(クリーン対バックドア)、サンプル機能に応じて操作を選択する。
一方,サンプル固有のトリガを生成するトリガジェネレータを開発した。
動的データ拡張操作セレクタによって誘導されるバックドアモデルとトリガジェネレータの同時最適化により、大幅な進歩が達成される。
大規模な実験により, クリーンな精度を維持しつつ, 最先端の攻撃性能を達成できることが実証された。
関連論文リスト
- Backdoor Defense through Self-Supervised and Generative Learning [0.0]
このようなデータのトレーニングは、選択されたテストサンプルに悪意のある推論を引き起こすバックドアを注入する。
本稿では,自己教師付き表現空間におけるクラスごとの分布生成モデルに基づくアプローチを提案する。
どちらの場合も、クラスごとの生成モデルにより、有毒なデータを検出し、データセットをクリーン化することができます。
論文 参考訳(メタデータ) (2024-09-02T11:40:01Z) - Backdoor Attack against One-Class Sequential Anomaly Detection Models [10.020488631167204]
そこで我々は,新たなバックドア攻撃戦略を提案することによって,深部連続異常検出モデルを提案する。
攻撃アプローチは2つの主要なステップ、トリガー生成とバックドアインジェクションから構成される。
2つの確立された1クラスの異常検出モデルにバックドアを注入することにより,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-15T19:19:54Z) - Rethinking Backdoor Attacks on Dataset Distillation: A Kernel Method
Perspective [65.70799289211868]
本稿では, データセット蒸留に特化した2つの新しい理論駆動トリガパターン生成手法を提案する。
最適化に基づくトリガ設計フレームワークは,データセットの蒸留に対する効果的なバックドア攻撃を通知する。
論文 参考訳(メタデータ) (2023-11-28T09:53:05Z) - Tabdoor: Backdoor Vulnerabilities in Transformer-based Neural Networks for Tabular Data [14.415796842972563]
本稿では,Deep Neural Networks (DNN) を用いた表型データに対するバックドア攻撃の包括的解析について述べる。
本稿では,ステルス性を維持しつつ攻撃性能に優れるインバウンド攻撃(in-bounds attack)を提案する。
以上の結果から,100%の攻撃成功率を達成できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-13T18:39:44Z) - Rethinking Backdoor Attacks [122.1008188058615]
バックドア攻撃では、悪意ある構築されたバックドアの例をトレーニングセットに挿入し、結果のモデルを操作に脆弱にする。
このような攻撃に対する防御は、典型的には、これらの挿入された例をトレーニングセットの外れ値として見ることと、堅牢な統計からのテクニックを使用してそれらを検出し、削除することである。
トレーニングデータ分布に関する構造情報がなければ,バックドア攻撃は自然に発生するデータの特徴と区別できないことを示す。
論文 参考訳(メタデータ) (2023-07-19T17:44:54Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - Kallima: A Clean-label Framework for Textual Backdoor Attacks [25.332731545200808]
マイメシススタイルのバックドアサンプルを合成するための,最初のクリーンラベルフレームワークKallimaを提案する。
我々は,対象クラスに属する入力を逆方向の摂動で修正し,モデルがバックドアトリガに依存するようにした。
論文 参考訳(メタデータ) (2022-06-03T21:44:43Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
バックドアモデルは、事前に定義されたトリガーパターンが存在する場合、常にターゲットクラスを予測する。
一般的には、敵の訓練はバックドア攻撃に対する防御であると信じられている。
本稿では,様々なバックドア攻撃に対して良好な堅牢性を提供するハイブリッド戦略を提案する。
論文 参考訳(メタデータ) (2022-02-22T02:24:46Z) - Backdoor Smoothing: Demystifying Backdoor Attacks on Deep Neural
Networks [25.23881974235643]
バックドア攻撃は、引き起こされたサンプルの周りでよりスムーズな決定関数を誘導することを示します。
実験の結果,入力サンプルにトリガーを付加するとスムーズさが増加し,この現象はより成功した攻撃に対してより顕著であることがわかった。
論文 参考訳(メタデータ) (2020-06-11T18:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。