論文の概要: A low complexity contextual stacked ensemble-learning approach for pedestrian intent prediction
- arxiv url: http://arxiv.org/abs/2410.13039v1
- Date: Wed, 16 Oct 2024 21:02:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:19:50.082917
- Title: A low complexity contextual stacked ensemble-learning approach for pedestrian intent prediction
- Title(参考訳): 歩行者意図予測のための低複雑性文脈重畳型アンサンブル学習手法
- Authors: Chia-Yen Chiang, Yasmin Fathy, Gregory Slabaugh, Mona Jaber,
- Abstract要約: 現在の研究では、コンピュータビジョンと機械学習の進歩を活用して、ニアミスを予測する。
本研究は,歩行者の横断意図を予測するための文脈データを用いた,低複雑さアンサンブル学習手法を提案する。
異なるデータセットに対する実験は、最先端のアプローチと同様の歩行者意図予測性能を実現する。
- 参考スコア(独自算出の注目度): 2.443659506850567
- License:
- Abstract: Walking as a form of active travel is essential in promoting sustainable transport. It is thus crucial to accurately predict pedestrian crossing intention and avoid collisions, especially with the advent of autonomous and advanced driver-assisted vehicles. Current research leverages computer vision and machine learning advances to predict near-misses; however, this often requires high computation power to yield reliable results. In contrast, this work proposes a low-complexity ensemble-learning approach that employs contextual data for predicting the pedestrian's intent for crossing. The pedestrian is first detected, and their image is then compressed using skeleton-ization, and contextual information is added into a stacked ensemble-learning approach. Our experiments on different datasets achieve similar pedestrian intent prediction performance as the state-of-the-art approaches with 99.7% reduction in computational complexity. Our source code and trained models will be released upon paper acceptance
- Abstract(参考訳): 持続可能な輸送を促進するためには、活発な旅行形態としての歩行が不可欠である。
したがって、特に自動運転および先進運転支援車両の出現において、歩行者の横断意図を正確に予測し、衝突を避けることが重要である。
現在の研究では、コンピュータビジョンと機械学習の進歩を活用してニアミスを予測するが、信頼性の高い結果を得るためには高い計算能力を必要とすることが多い。
対照的に、この研究は、歩行者の横断意図を予測するために文脈データを利用する低複雑さアンサンブル学習手法を提案する。
歩行者が最初に検出され、その画像は骨格化により圧縮され、コンテキスト情報は積み重ねられたアンサンブル学習アプローチに付加される。
異なるデータセットに対する実験は、99.7%の計算複雑性を減らした最先端のアプローチと同様の歩行者意図予測性能を実現する。
私たちのソースコードとトレーニングされたモデルは、論文の受理によってリリースされます。
関連論文リスト
- PedFormer: Pedestrian Behavior Prediction via Cross-Modal Attention
Modulation and Gated Multitask Learning [10.812772606528172]
本研究では,エゴ中心の視点から,歩行者の将来の軌跡や横断行動を予測するために,異なるデータモダリティに依存する新しい枠組みを提案する。
本モデルでは, トラジェクトリとアクション予測の精度を, それぞれ22%, 13%向上した。
論文 参考訳(メタデータ) (2022-10-14T15:12:00Z) - Pedestrian 3D Bounding Box Prediction [83.7135926821794]
我々は、自動運転車の複雑な動きの詳細をモデル化せずに、人間の合理的な推定値である3Dバウンディングボックスに焦点を当てる。
本稿では, 歩行者の3次元境界ボックス予測のための, 単純かつ効果的なモデルを提案する。
この方法は、繰り返しニューラルネットワークに基づくエンコーダ・デコーダアーキテクチャに従う。
論文 参考訳(メタデータ) (2022-06-28T17:59:45Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
歩行者の立ち止まりと予測の新たな課題を紹介します。
都市交通における歩行者の立ち寄り行動を明示的に研究するためのベンチマークであるTransをリリースする。
歩行者の歩行動作に注釈を付けたいくつかの既存のデータセットから構築し、さまざまなシナリオや行動を実現する。
論文 参考訳(メタデータ) (2022-03-04T18:39:31Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
交通現場では、来るべき人々と出会うと、歩行者は突然回転したり、すぐに止まることがある。
このような予測不可能な軌道を予測するために、歩行者間の相互作用についての洞察を得ることができる。
本稿では,歩行者軌跡の相関関係を注意機構を用いて学習する空間的相互作用変換器(SIT)を提案する。
論文 参考訳(メタデータ) (2021-12-13T13:08:04Z) - PSI: A Pedestrian Behavior Dataset for Socially Intelligent Autonomous
Car [47.01116716025731]
本稿では、IUPUI-CSRC Pedestrian Situated Intent(PSI)データと呼ばれる別のベンチマークデータセットを提案し、共有する。
最初の新しいラベルは、24人のドライバーによって達成されたエゴ車両の前を歩行者が横断する動的な意図の変化である。
2つ目は、歩行者の意図を推定し、その行動を予測するときに、運転者の推論プロセスに関するテキストベースの説明である。
論文 参考訳(メタデータ) (2021-12-05T15:54:57Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - Pedestrian Behavior Prediction for Automated Driving: Requirements,
Metrics, and Relevant Features [1.1888947789336193]
システムレベルアプローチによる自動走行の歩行者行動予測の要件を分析した。
人間の運転行動に基づいて、自動走行車の適切な反応パターンを導出する。
複数の文脈的手がかりを組み込んだ変分条件自動エンコーダに基づく歩行者予測モデルを提案する。
論文 参考訳(メタデータ) (2020-12-15T16:52:49Z) - Pedestrian Intention Prediction: A Multi-task Perspective [83.7135926821794]
グローバルに展開するためには、自動運転車は歩行者の安全を保証する必要がある。
本研究は歩行者の意図と視覚状態を共同で予測することでこの問題を解決しようとするものである。
この方法はマルチタスク学習アプローチにおけるリカレントニューラルネットワークである。
論文 参考訳(メタデータ) (2020-10-20T13:42:31Z) - A Real-Time Predictive Pedestrian Collision Warning Service for
Cooperative Intelligent Transportation Systems Using 3D Pose Estimation [10.652350454373531]
歩行者方向認識(100.53 FPS)と意図予測(35.76 FPS)の2つのタスクに対して,リアルタイムな歩行者衝突警報サービス(P2CWS)を提案する。
提案手法は,提案したサイトに依存しない特徴により,複数のサイトに対する一般化を満足する。
提案したビジョンフレームワークは、トレーニングプロセスなしでTUDデータセットの行動認識タスクの89.3%の精度を実現する。
論文 参考訳(メタデータ) (2020-09-23T00:55:12Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。