論文の概要: Supply Chain Network Extraction and Entity Classification Leveraging Large Language Models
- arxiv url: http://arxiv.org/abs/2410.13051v1
- Date: Wed, 16 Oct 2024 21:24:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:20:45.601624
- Title: Supply Chain Network Extraction and Entity Classification Leveraging Large Language Models
- Title(参考訳): 大規模言語モデルを利用したサプライチェーンネットワーク抽出とエンティティ分類
- Authors: Tong Liu, Hadi Meidani,
- Abstract要約: 我々は,大規模言語モデル(LLM)を用いた土木分野向けサプライチェーングラフを開発する。
LLMを微調整してサプライチェーングラフ内のエンティティを分類し、それらの役割と関係に関する詳細な洞察を提供する。
我々の貢献には、土木分野向けのサプライチェーングラフの開発や、サプライチェーンネットワークのエンティティ分類と理解を強化する微調整LCMモデルなどが含まれます。
- 参考スコア(独自算出の注目度): 5.205252810216621
- License:
- Abstract: Supply chain networks are critical to the operational efficiency of industries, yet their increasing complexity presents significant challenges in mapping relationships and identifying the roles of various entities. Traditional methods for constructing supply chain networks rely heavily on structured datasets and manual data collection, limiting their scope and efficiency. In contrast, recent advancements in Natural Language Processing (NLP) and large language models (LLMs) offer new opportunities for discovering and analyzing supply chain networks using unstructured text data. This paper proposes a novel approach that leverages LLMs to extract and process raw textual information from publicly available sources to construct a comprehensive supply chain graph. We focus on the civil engineering sector as a case study, demonstrating how LLMs can uncover hidden relationships among companies, projects, and other entities. Additionally, we fine-tune an LLM to classify entities within the supply chain graph, providing detailed insights into their roles and relationships. The results show that domain-specific fine-tuning improves classification accuracy, highlighting the potential of LLMs for industry-specific supply chain analysis. Our contributions include the development of a supply chain graph for the civil engineering sector, as well as a fine-tuned LLM model that enhances entity classification and understanding of supply chain networks.
- Abstract(参考訳): サプライチェーンネットワークは、産業の運用効率にとって重要であるが、その複雑化は、関係のマッピングや様々なエンティティの役割の特定において重大な課題をもたらす。
サプライチェーンネットワークを構築する従来の方法は、構造化データセットと手動データ収集に大きく依存しており、そのスコープと効率を制限している。
対照的に、最近の自然言語処理(NLP)と大規模言語モデル(LLM)の進歩は、構造化されていないテキストデータを用いてサプライチェーンネットワークを発見し解析する新たな機会を提供する。
本稿では,LLMを利用して公開資料から生のテキスト情報を抽出・処理し,包括的サプライチェーングラフを構築する手法を提案する。
我々は,LLMが企業,プロジェクト,その他の組織間の隠れた関係をいかに明らかにできるかを示すケーススタディとして,土木部門に焦点をあてる。
さらに、LCMを微調整してサプライチェーングラフ内のエンティティを分類し、それらの役割や関係について詳細な洞察を提供する。
その結果, ドメイン固有の微調整により分類精度が向上し, 業界固有のサプライチェーン分析におけるLCMの可能性が示された。
我々の貢献には、土木分野向けのサプライチェーングラフの開発や、サプライチェーンネットワークのエンティティ分類と理解を強化する微調整LCMモデルなどが含まれます。
関連論文リスト
- Lifting the Veil on the Large Language Model Supply Chain: Composition, Risks, and Mitigations [6.478930807409979]
大規模言語モデル(LLM)は、インテリジェンスと生産性の両方に重大な影響を与えている。
本稿では, LLMサプライチェーンの概要を概説し, ステークホルダー, アーティファクトの構成, 供給タイプについて詳述する。
論文 参考訳(メタデータ) (2024-10-28T17:02:12Z) - Enhancing Supply Chain Visibility with Knowledge Graphs and Large Language Models [49.898152180805454]
本稿では,サプライチェーンの可視性を高めるために,知識グラフ(KG)と大規模言語モデル(LLM)を活用した新しいフレームワークを提案する。
我々のゼロショットLPM駆動アプローチは、様々な公共情報源からのサプライチェーン情報の抽出を自動化する。
NERとREタスクの精度が高く、複雑な多層供給ネットワークを理解する効果的なツールを提供する。
論文 参考訳(メタデータ) (2024-08-05T17:11:29Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - Large Language Model Supply Chain: A Research Agenda [5.1875389249043415]
大規模言語モデル(LLM)は、自然言語処理とマルチモーダルコンテンツ生成において前例のない能力を導入し、人工知能に革命をもたらした。
しかし、これらのモデルの複雑さと規模が増大し、インフラ、基礎モデル、下流アプリケーションに固有の課題をもたらす多面的なサプライチェーンが生まれました。
本稿では,ソフトウェア工学(SE)とセキュリティとプライバシ(S&P)の両レンズによる重要な課題と機会を特定するための構造化アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-19T09:29:53Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z) - Large Language Models for Supply Chain Optimization [4.554094815136834]
大規模言語モデル(LLM)がサプライチェーンの自動化と人間の理解と信頼のギャップを埋めるのにどのように役立つかを検討する。
我々はOptiGuideを設計する。これは平易なテキストで入力クエリとして受け付け、基礎となる結果に関する洞察を出力するフレームワークです。
当社のフレームワークがMicrosoftのクラウドサプライチェーン内の実際のサーバ配置シナリオに与える影響を実演する。
論文 参考訳(メタデータ) (2023-07-08T01:42:22Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
大規模言語モデル(LLM)は、広範な共通知識と強力な意味理解能力を持つことが証明されている。
LLMs-as-EnhancersとLLMs-as-Predictorsの2つのパイプラインについて検討する。
論文 参考訳(メタデータ) (2023-07-07T05:31:31Z) - Data Considerations in Graph Representation Learning for Supply Chain
Networks [64.72135325074963]
本稿では,隠れた依存関係リンクを明らかにするためのグラフ表現学習手法を提案する。
本稿では,グローバルな自動車サプライチェーンネットワークのリンク予測における最先端の性能向上を実証する。
論文 参考訳(メタデータ) (2021-07-22T12:28:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。