The Influence of Generative AI on Content Platforms: Supply, Demand, and Welfare Impacts in Two-Sided Markets
- URL: http://arxiv.org/abs/2410.13101v1
- Date: Thu, 17 Oct 2024 00:14:12 GMT
- Title: The Influence of Generative AI on Content Platforms: Supply, Demand, and Welfare Impacts in Two-Sided Markets
- Authors: Yukun Zhang,
- Abstract summary: This paper explores how generative artificial intelligence affects online platforms where both human creators and AI generate content.
We develop a model to understand how generative AI changes supply and demand, impacts traffic distribution, and influences social welfare.
- Score: 3.4039202831583903
- License:
- Abstract: This paper explores how generative artificial intelligence (AI) affects online platforms where both human creators and AI generate content. We develop a model to understand how generative AI changes supply and demand, impacts traffic distribution, and influences social welfare. Our analysis shows that AI can lead to a huge increase in content supply due to its low cost, which could cause oversupply. While AI boosts content variety, it can also create information overload, lowering user satisfaction and disrupting the market. AI also increases traffic concentration among top creators (the "winner-takes-all" effect) while expanding opportunities for niche content (the "long-tail" effect). We assess how these changes affect consumer and producer benefits, finding that the overall impact depends on the quality of AI-generated content and the level of information overload. Through simulation experiments, we test policy ideas, such as adjusting platform fees and recommendations, to reduce negative effects and improve social welfare. The results highlight the need for careful management of AI's role in online content platforms to maintain a healthy balance
Related papers
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
We show the effects of performance pressure on AI advice reliance when laypeople complete a common AI-assisted task.
We find that when the stakes are high, people use AI advice more appropriately than when stakes are lower, regardless of the presence of an AI explanation.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
We argue that the 'bigger is better' AI paradigm is not only fragile scientifically, but comes with undesirable consequences.
First, it is not sustainable, as its compute demands increase faster than model performance, leading to unreasonable economic requirements and a disproportionate environmental footprint.
Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate.
arXiv Detail & Related papers (2024-09-21T14:43:54Z) - Measuring Human Contribution in AI-Assisted Content Generation [68.03658922067487]
This study raises the research question of measuring human contribution in AI-assisted content generation.
By calculating mutual information between human input and AI-assisted output relative to self-information of AI-assisted output, we quantify the proportional information contribution of humans in content generation.
arXiv Detail & Related papers (2024-08-27T05:56:04Z) - Generative AI and Copyright: A Dynamic Perspective [0.0]
generative AI is poised to disrupt the creative industry.
The compensation to creators whose content has been used to train generative AI models (the fair use standard) and the eligibility of AI-generated content for copyright protection (AI-copyrightability) are key issues.
This paper aims to better understand the economic implications of these two regulatory issues and their interactions.
arXiv Detail & Related papers (2024-02-27T07:12:48Z) - The impact of generative artificial intelligence on socioeconomic inequalities and policy making [1.5156317247732694]
Generative artificial intelligence has the potential to both exacerbate and ameliorate existing socioeconomic inequalities.
Our goal is to highlight how generative AI could worsen existing inequalities while illuminating how AI may help mitigate pervasive social problems.
In the information domain, generative AI can democratize content creation and access, but may dramatically expand the production and proliferation of misinformation.
In education, it offers personalized learning, but may widen the digital divide.
In healthcare, it might improve diagnostics and accessibility, but could deepen pre-existing inequalities.
arXiv Detail & Related papers (2023-12-16T10:37:22Z) - The Impact of Generative Artificial Intelligence on Market Equilibrium: Evidence from a Natural Experiment [19.963531237647103]
Generative artificial intelligence (AI) exhibits the capability to generate creative content akin to human output with greater efficiency and reduced costs.
This paper empirically investigates the impact of generative AI on market equilibrium, in the context of China's leading art outsourcing platform.
Our analysis shows that the advent of generative AI led to a 64% reduction in average prices, yet it simultaneously spurred a 121% increase in order volume and a 56% increase in overall revenue.
arXiv Detail & Related papers (2023-11-13T04:31:53Z) - Human-AI Interactions and Societal Pitfalls [1.6413583085553642]
When working with generative artificial intelligence (AI), users may see productivity gains, but the AI-generated content may not match their preferences exactly.
We show that the interplay between individual-level decisions and AI training may lead to societal challenges.
A solution to the homogenization and bias issues is to improve human-AI interactions, enabling personalized outputs without sacrificing productivity.
arXiv Detail & Related papers (2023-09-19T09:09:59Z) - VerifAI: Verified Generative AI [22.14231506649365]
Generative AI has made significant strides, yet concerns about its accuracy and reliability continue to grow.
We propose that verifying the outputs of generative AI from a data management perspective is an emerging issue for generative AI.
Our vision is to promote the development of verifiable generative AI and contribute to a more trustworthy and responsible use of AI.
arXiv Detail & Related papers (2023-07-06T06:11:51Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Adaptive cognitive fit: Artificial intelligence augmented management of
information facets and representations [62.997667081978825]
Explosive growth in big data technologies and artificial intelligence [AI] applications have led to increasing pervasiveness of information facets.
Information facets, such as equivocality and veracity, can dominate and significantly influence human perceptions of information.
We suggest that artificially intelligent technologies that can adapt information representations to overcome cognitive limitations are necessary.
arXiv Detail & Related papers (2022-04-25T02:47:25Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.