Generative AI and Copyright: A Dynamic Perspective
- URL: http://arxiv.org/abs/2402.17801v1
- Date: Tue, 27 Feb 2024 07:12:48 GMT
- Title: Generative AI and Copyright: A Dynamic Perspective
- Authors: S. Alex Yang and Angela Huyue Zhang
- Abstract summary: generative AI is poised to disrupt the creative industry.
The compensation to creators whose content has been used to train generative AI models (the fair use standard) and the eligibility of AI-generated content for copyright protection (AI-copyrightability) are key issues.
This paper aims to better understand the economic implications of these two regulatory issues and their interactions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid advancement of generative AI is poised to disrupt the creative
industry. Amidst the immense excitement for this new technology, its future
development and applications in the creative industry hinge crucially upon two
copyright issues: 1) the compensation to creators whose content has been used
to train generative AI models (the fair use standard); and 2) the eligibility
of AI-generated content for copyright protection (AI-copyrightability). While
both issues have ignited heated debates among academics and practitioners, most
analysis has focused on their challenges posed to existing copyright doctrines.
In this paper, we aim to better understand the economic implications of these
two regulatory issues and their interactions. By constructing a dynamic model
with endogenous content creation and AI model development, we unravel the
impacts of the fair use standard and AI-copyrightability on AI development, AI
company profit, creators income, and consumer welfare, and how these impacts
are influenced by various economic and operational factors. For example, while
generous fair use (use data for AI training without compensating the creator)
benefits all parties when abundant training data exists, it can hurt creators
and consumers when such data is scarce. Similarly, stronger AI-copyrightability
(AI content enjoys more copyright protection) could hinder AI development and
reduce social welfare. Our analysis also highlights the complex interplay
between these two copyright issues. For instance, when existing training data
is scarce, generous fair use may be preferred only when AI-copyrightability is
weak. Our findings underscore the need for policymakers to embrace a dynamic,
context-specific approach in making regulatory decisions and provide insights
for business leaders navigating the complexities of the global regulatory
environment.
Related papers
- Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
We argue that the 'bigger is better' AI paradigm is not only fragile scientifically, but comes with undesirable consequences.
First, it is not sustainable, as its compute demands increase faster than model performance, leading to unreasonable economic requirements and a disproportionate environmental footprint.
Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate.
arXiv Detail & Related papers (2024-09-21T14:43:54Z) - An Economic Solution to Copyright Challenges of Generative AI [35.37023083413299]
Generative artificial intelligence systems are trained to generate new pieces of text, images, videos, and other media.
There is growing concern that such systems may infringe on the copyright interests of training data contributors.
We propose a framework that compensates copyright owners proportionally to their contributions to the creation of AI-generated content.
arXiv Detail & Related papers (2024-04-22T08:10:38Z) - Uncertain Boundaries: Multidisciplinary Approaches to Copyright Issues in Generative AI [2.669847575321326]
The survey aims to stay abreast of the latest developments and open problems.
It will first outline methods of detecting copyright infringement in mediums such as text, image, and video.
Next, it will delve an exploration of existing techniques aimed at safeguarding copyrighted works from generative models.
arXiv Detail & Related papers (2024-03-31T22:10:01Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - Training Is Everything: Artificial Intelligence, Copyright, and Fair
Training [9.653656920225858]
Authors: Companies that use such content to train their AI engine often believe such usage should be considered "fair use"
Authors: Copyright owners, as well as their supporters, consider the incorporation of copyrighted works into training sets for AI to constitute misappropriation of owners' intellectual property.
We identify both strong and spurious arguments on both sides of this debate.
arXiv Detail & Related papers (2023-05-04T04:01:00Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - An Ethical Framework for Guiding the Development of Affectively-Aware
Artificial Intelligence [0.0]
We propose guidelines for evaluating the (moral and) ethical consequences of affectively-aware AI.
We propose a multi-stakeholder analysis framework that separates the ethical responsibilities of AI Developers vis-a-vis the entities that deploy such AI.
We end with recommendations for researchers, developers, operators, as well as regulators and law-makers.
arXiv Detail & Related papers (2021-07-29T03:57:53Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.