Cliqueformer: Model-Based Optimization with Structured Transformers
- URL: http://arxiv.org/abs/2410.13106v1
- Date: Thu, 17 Oct 2024 00:35:47 GMT
- Title: Cliqueformer: Model-Based Optimization with Structured Transformers
- Authors: Jakub Grudzien Kuba, Pieter Abbeel, Sergey Levine,
- Abstract summary: We develop a model that learns the structure of an MBO task and empirically leads to improved designs.
We evaluate Cliqueformer on various tasks, ranging from high-dimensional black-box functions to real-world tasks of chemical and genetic design.
- Score: 102.55764949282906
- License:
- Abstract: Expressive large-scale neural networks enable training powerful models for prediction tasks. However, in many engineering and science domains, such models are intended to be used not just for prediction, but for design -- e.g., creating new proteins that serve as effective therapeutics, or creating new materials or chemicals that maximize a downstream performance measure. Thus, researchers have recently grown an interest in building deep learning methods that solve offline \emph{model-based optimization} (MBO) problems, in which design candidates are optimized with respect to surrogate models learned from offline data. However, straightforward application of predictive models that are effective at predicting in-distribution properties of a design are not necessarily the best suited for use in creating new designs. Thus, the most successful algorithms that tackle MBO draw inspiration from reinforcement learning and generative modeling to meet the in-distribution constraints. Meanwhile, recent theoretical works have observed that exploiting the structure of the target black-box function is an effective strategy for solving MBO from offline data. Unfortunately, discovering such structure remains an open problem. In this paper, following first principles, we develop a model that learns the structure of an MBO task and empirically leads to improved designs. To this end, we introduce \emph{Cliqueformer} -- a scalable transformer-based architecture that learns the black-box function's structure in the form of its \emph{functional graphical model} (FGM), thus bypassing the problem of distribution shift, previously tackled by conservative approaches. We evaluate Cliqueformer on various tasks, ranging from high-dimensional black-box functions from MBO literature to real-world tasks of chemical and genetic design, consistently demonstrating its state-of-the-art performance.
Related papers
- Enhancing Generative Molecular Design via Uncertainty-guided Fine-tuning of Variational Autoencoders [2.0701439270461184]
A critical challenge for pre-trained generative molecular design models is to fine-tune them to be better suited for downstream design tasks.
In this work, we propose a novel approach for a generative uncertainty decoder (VAE)-based GMD model through performance feedback in an active setting.
arXiv Detail & Related papers (2024-05-31T02:00:25Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
We introduce a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods.
Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data.
Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost.
arXiv Detail & Related papers (2023-05-29T09:16:07Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
Predictive coding is a message-passing framework initially developed to model information processing in the brain.
In this work, we build models that rely on the message-passing rule of predictive coding.
We show that the proposed models are comparable to standard ones in terms of performance in both inductive and transductive tasks.
arXiv Detail & Related papers (2022-12-09T03:58:22Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
We propose a novel paradigm of incorporating model-specific prior knowledge into Structurals and using them to train generic (simple) models.
As an implementation, we propose a novel methodology to add prior knowledge by modifying the gradients according to a set of model-specific hyper- parameters.
For a simple model trained with a Repr, we focus on a VGG-style plain model and showcase that such a simple model trained with a Repr, which is referred to as Rep-VGG, performs on par with the recent well-designed models.
arXiv Detail & Related papers (2022-05-30T16:55:59Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
We propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model.
We introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data.
arXiv Detail & Related papers (2022-04-03T02:29:11Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.