Algorithmic Content Selection and the Impact of User Disengagement
- URL: http://arxiv.org/abs/2410.13108v1
- Date: Thu, 17 Oct 2024 00:43:06 GMT
- Title: Algorithmic Content Selection and the Impact of User Disengagement
- Authors: Emilio Calvano, Nika Haghtalab, Ellen Vitercik, Eric Zhao,
- Abstract summary: We introduce a model for the content selection problem where dissatisfied users may disengage.
We show that when the relationship between each arm's expected reward and effect on user satisfaction are linearly related, an optimal content selection policy can be computed efficiently.
- Score: 19.14804091327051
- License:
- Abstract: The content selection problem of digital services is often modeled as a decision-process where a service chooses, over multiple rounds, an arm to pull from a set of arms that each return a certain reward. This classical model does not account for the possibility that users disengage when dissatisfied and thus fails to capture an important trade-off between choosing content that promotes future engagement versus immediate reward. In this work, we introduce a model for the content selection problem where dissatisfied users may disengage and where the content that maximizes immediate reward does not necessarily maximize the odds of future user engagement. We show that when the relationship between each arm's expected reward and effect on user satisfaction are linearly related, an optimal content selection policy can be computed efficiently with dynamic programming under natural assumptions about the complexity of the users' engagement patterns. Moreover, we show that in an online learning setting where users with unknown engagement patterns arrive, there is a variant of Hedge that attains a $\tfrac 12$-competitive ratio regret bound. We also use our model to identify key primitives that determine how digital services should weigh engagement against revenue. For example, when it is more difficult for users to rejoin a service they are disengaged from, digital services naturally see a reduced payoff but user engagement may -- counterintuitively -- increase.
Related papers
- Unveiling User Satisfaction and Creator Productivity Trade-Offs in Recommendation Platforms [68.51708490104687]
We show that a purely relevance-driven policy with low exploration strength boosts short-term user satisfaction but undermines the long-term richness of the content pool.
Our findings reveal a fundamental trade-off between immediate user satisfaction and overall content production on platforms.
arXiv Detail & Related papers (2024-10-31T07:19:22Z) - User Welfare Optimization in Recommender Systems with Competing Content Creators [65.25721571688369]
In this study, we perform system-side user welfare optimization under a competitive game setting among content creators.
We propose an algorithmic solution for the platform, which dynamically computes a sequence of weights for each user based on their satisfaction of the recommended content.
These weights are then utilized to design mechanisms that adjust the recommendation policy or the post-recommendation rewards, thereby influencing creators' content production strategies.
arXiv Detail & Related papers (2024-04-28T21:09:52Z) - Ad-load Balancing via Off-policy Learning in a Content Marketplace [9.783697404304025]
Ad-load balancing is a critical challenge in online advertising systems, particularly in the context of social media platforms.
Traditional approaches to ad-load balancing rely on static allocation policies, which fail to adapt to changing user preferences and contextual factors.
We present an approach that leverages off-policy learning and evaluation from logged bandit feedback.
arXiv Detail & Related papers (2023-09-19T09:17:07Z) - Online Learning in a Creator Economy [91.55437924091844]
We study the creator economy as a three-party game between the users, platform, and content creators.
We analyze two families of contracts: return-based contracts and feature-based contracts.
We show that under smoothness assumptions, the joint optimization of return-based contracts and recommendation policy provides a regret.
arXiv Detail & Related papers (2023-05-19T01:58:13Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
We consider a dynamic model with the consumers' preferences as well as price sensitivity varying over time.
We measure the performance of a dynamic pricing policy via regret, which is the expected revenue loss compared to a clairvoyant that knows the sequence of model parameters in advance.
Our regret analysis results not only demonstrate optimality of the proposed policy but also show that for policy planning it is essential to incorporate available structural information.
arXiv Detail & Related papers (2023-03-28T00:23:23Z) - How Bad is Top-$K$ Recommendation under Competing Content Creators? [43.2268992294178]
We study the user welfare guarantee through the lens of Price of Anarchy.
We show that the fraction of user welfare loss due to creator competition is always upper bounded by a small constant depending on $K$ and randomness in user decisions.
arXiv Detail & Related papers (2023-02-03T19:37:35Z) - Personalizing Intervened Network for Long-tailed Sequential User
Behavior Modeling [66.02953670238647]
Tail users suffer from significantly lower-quality recommendation than the head users after joint training.
A model trained on tail users separately still achieve inferior results due to limited data.
We propose a novel approach that significantly improves the recommendation performance of the tail users.
arXiv Detail & Related papers (2022-08-19T02:50:19Z) - Reliable Decision from Multiple Subtasks through Threshold Optimization:
Content Moderation in the Wild [7.176020195419459]
Social media platforms struggle to protect users from harmful content through content moderation.
These platforms have recently leveraged machine learning models to cope with the vast amount of user-generated content daily.
Third-party content moderation services provide prediction scores of multiple subtasks, such as predicting the existence of underage personnel, rude gestures, or weapons.
We introduce a simple yet effective threshold optimization method that searches the optimal thresholds of the multiple subtasks to make a reliable moderation decision in a cost-effective way.
arXiv Detail & Related papers (2022-08-16T03:51:43Z) - Online Learning Demands in Max-min Fairness [91.37280766977923]
We describe mechanisms for the allocation of a scarce resource among multiple users in a way that is efficient, fair, and strategy-proof.
The mechanism is repeated for multiple rounds and a user's requirements can change on each round.
At the end of each round, users provide feedback about the allocation they received, enabling the mechanism to learn user preferences over time.
arXiv Detail & Related papers (2020-12-15T22:15:20Z) - Maximizing Cumulative User Engagement in Sequential Recommendation: An
Online Optimization Perspective [26.18096797120916]
It is often needed to tradeoff two potentially conflicting objectives, that is, pursuing higher immediate user engagement and encouraging user browsing.
We propose a flexible and practical framework to explicitly tradeoff longer user browsing length and high immediate user engagement.
This approach is deployed at a large E-commerce platform, achieved over 7% improvement of cumulative clicks.
arXiv Detail & Related papers (2020-06-02T09:02:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.