Learning Efficient Representations of Neutrino Telescope Events
- URL: http://arxiv.org/abs/2410.13148v1
- Date: Thu, 17 Oct 2024 02:07:54 GMT
- Title: Learning Efficient Representations of Neutrino Telescope Events
- Authors: Felix J. Yu, Nicholas Kamp, Carlos A. Argüelles,
- Abstract summary: Neutrino telescopes detect rare interactions of particles produced in some of the most extreme environments in the Universe.
Given their size and the high frequency of background interactions, these telescopes amass an enormous quantity of large variance, high-dimensional data.
We present a novel approach, called om2vec, that employs transformer-based variational autoencoders to efficiently represent neutrino telescope events by learning compact and latent representations.
- Score: 0.0
- License:
- Abstract: Neutrino telescopes detect rare interactions of particles produced in some of the most extreme environments in the Universe. This is accomplished by instrumenting a cubic-kilometer volume of naturally occurring transparent medium with light sensors. Given their substantial size and the high frequency of background interactions, these telescopes amass an enormous quantity of large variance, high-dimensional data. These attributes create substantial challenges for analyzing and reconstructing interactions, particularly when utilizing machine learning (ML) techniques. In this paper, we present a novel approach, called om2vec, that employs transformer-based variational autoencoders to efficiently represent neutrino telescope events by learning compact and descriptive latent representations. We demonstrate that these latent representations offer enhanced flexibility and improved computational efficiency, thereby facilitating downstream tasks in data analysis.
Related papers
- Enhancing Events in Neutrino Telescopes through Deep Learning-Driven Super-Resolution [0.0]
We propose a novel technique that learns photon transport through the detector medium through the use of deep learning-driven super-resolution of data events.
Our strategy arranges additional virtual'' optical modules within an existing detector geometry and trains a convolutional neural network to predict the hits on these virtual optical modules.
arXiv Detail & Related papers (2024-08-16T01:20:27Z) - HyperINR: A Fast and Predictive Hypernetwork for Implicit Neural
Representations via Knowledge Distillation [31.44962361819199]
Implicit Neural Representations (INRs) have recently exhibited immense potential in the field of scientific visualization.
In this paper, we introduce HyperINR, a novel hypernetwork architecture capable of directly predicting the weights for a compact INR.
By harnessing an ensemble of multiresolution hash encoding units in unison, the resulting INR attains state-of-the-art inference performance.
arXiv Detail & Related papers (2023-04-09T08:10:10Z) - Interpretable Joint Event-Particle Reconstruction for Neutrino Physics
at NOvA with Sparse CNNs and Transformers [124.29621071934693]
We present a novel neural network architecture that combines the spatial learning enabled by convolutions with the contextual learning enabled by attention.
TransformerCVN simultaneously classifies each event and reconstructs every individual particle's identity.
This architecture enables us to perform several interpretability studies which provide insights into the network's predictions.
arXiv Detail & Related papers (2023-03-10T20:36:23Z) - Multi-mode fiber reservoir computing overcomes shallow neural networks
classifiers [8.891157811906407]
We recast multi-mode optical fibers into random hardware projectors, transforming an input dataset into a speckled image set.
We find that the hardware operates in a flatter region of the loss landscape when trained on fiber data, which aligns with the current theory of deep neural networks.
arXiv Detail & Related papers (2022-10-10T14:55:02Z) - NeRF-Supervision: Learning Dense Object Descriptors from Neural Radiance
Fields [54.27264716713327]
We show that a Neural Radiance Fields (NeRF) representation of a scene can be used to train dense object descriptors.
We use an optimized NeRF to extract dense correspondences between multiple views of an object, and then use these correspondences as training data for learning a view-invariant representation of the object.
Dense correspondence models supervised with our method significantly outperform off-the-shelf learned descriptors by 106%.
arXiv Detail & Related papers (2022-03-03T18:49:57Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Adaptive Machine Learning for Time-Varying Systems: Low Dimensional
Latent Space Tuning [91.3755431537592]
We present a recently developed method of adaptive machine learning for time-varying systems.
Our approach is to map very high (N>100k) dimensional inputs into the low dimensional (N2) latent space at the output of the encoder section of an encoder-decoder CNN.
This method allows us to learn correlations within and to track their evolution in real time based on feedback without interrupts.
arXiv Detail & Related papers (2021-07-13T16:05:28Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Adaptive Latent Space Tuning for Non-Stationary Distributions [62.997667081978825]
We present a method for adaptive tuning of the low-dimensional latent space of deep encoder-decoder style CNNs.
We demonstrate our approach for predicting the properties of a time-varying charged particle beam in a particle accelerator.
arXiv Detail & Related papers (2021-05-08T03:50:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.