TCP-Diffusion: A Multi-modal Diffusion Model for Global Tropical Cyclone Precipitation Forecasting with Change Awareness
- URL: http://arxiv.org/abs/2410.13175v1
- Date: Thu, 17 Oct 2024 02:58:05 GMT
- Title: TCP-Diffusion: A Multi-modal Diffusion Model for Global Tropical Cyclone Precipitation Forecasting with Change Awareness
- Authors: Cheng Huang, Pan Mu, Cong Bai, Peter AG Watson,
- Abstract summary: Tropical Cyclone Precipitation Diffusion ( TCP-Diffusion) is a multi-modal model for global tropical cyclone precipitation forecasting.
It forecasts TC rainfall around the TC center for the next 12 hours at 3 hourly resolution based on past rainfall observations and multi-modal environmental variables.
Considering the influence of TC-related meteorological factors and the useful information from NWP model forecasts, we propose a multi-model framework with specialized encoders.
- Score: 13.696784449863959
- License:
- Abstract: Precipitation from tropical cyclones (TCs) can cause disasters such as flooding, mudslides, and landslides. Predicting such precipitation in advance is crucial, giving people time to prepare and defend against these precipitation-induced disasters. Developing deep learning (DL) rainfall prediction methods offers a new way to predict potential disasters. However, one problem is that most existing methods suffer from cumulative errors and lack physical consistency. Second, these methods overlook the importance of meteorological factors in TC rainfall and their integration with the numerical weather prediction (NWP) model. Therefore, we propose Tropical Cyclone Precipitation Diffusion (TCP-Diffusion), a multi-modal model for global tropical cyclone precipitation forecasting. It forecasts TC rainfall around the TC center for the next 12 hours at 3 hourly resolution based on past rainfall observations and multi-modal environmental variables. Adjacent residual prediction (ARP) changes the training target from the absolute rainfall value to the rainfall trend and gives our model the ability of rainfall change awareness, reducing cumulative errors and ensuring physical consistency. Considering the influence of TC-related meteorological factors and the useful information from NWP model forecasts, we propose a multi-model framework with specialized encoders to extract richer information from environmental variables and results provided by NWP models. The results of extensive experiments show that our method outperforms other DL methods and the NWP method from the European Centre for Medium-Range Weather Forecasts (ECMWF).
Related papers
- Enhanced Precision in Rainfall Forecasting for Mumbai: Utilizing Physics Informed ConvLSTM2D Models for Finer Spatial and Temporal Resolution [0.0]
This study introduces deep learning spatial model aimed at enhancing rainfall prediction accuracy on a finer scale.
To test this hypothesis, we introduce a physics informed ConvLSTM2D model to predict precipitation 6hr and 12hr ahead for Mumbai, India.
arXiv Detail & Related papers (2024-04-01T13:56:12Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
We propose CasCast, a cascaded framework composed of a deterministic and a probabilistic part to decouple predictions for mesoscale precipitation distributions and small-scale patterns.
CasCast significantly surpasses the baseline (up to +91.8%) for regional extreme-precipitation nowcasting.
arXiv Detail & Related papers (2024-02-06T08:30:47Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Self-Supervised Pre-Training for Precipitation Post-Processor [1.5553847214012175]
We propose a deep learning-based precipitation post-processor for numerical weather prediction (NWP) models.
Our experiments on precipitation correction for regional NWP datasets show that the proposed method outperforms other approaches.
arXiv Detail & Related papers (2023-10-31T05:13:10Z) - PostRainBench: A comprehensive benchmark and a new model for precipitation forecasting [14.855615256498]
We focus on the Numerical Weather Prediction (NWP) post-processing based precipitation forecasting task.
We introduce the textbfPostRainBench, a comprehensive multi-variable NWP post-processing benchmark, and textbfCAMT, a simple yet effective Channel Attention Enhanced Multi-task Learning framework.
Our model is the first deep learning-based method to outperform NWP approaches in heavy rain conditions.
arXiv Detail & Related papers (2023-10-04T09:27:39Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Deep learning for improved global precipitation in numerical weather
prediction systems [1.721029532201972]
We use the UNET architecture of a deep convolutional neural network with residual learning as a proof of concept to learn global data-driven models of precipitation.
The results are compared with the operational dynamical model used by the India Meteorological Department.
This study is a proof-of-concept showing that residual learning-based UNET can unravel physical relationships to target precipitation.
arXiv Detail & Related papers (2021-06-20T05:10:42Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
We present TRU-NET, an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers.
We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall.
Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction.
arXiv Detail & Related papers (2020-08-20T17:27:59Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.