PostRainBench: A comprehensive benchmark and a new model for precipitation forecasting
- URL: http://arxiv.org/abs/2310.02676v3
- Date: Fri, 11 Oct 2024 03:12:31 GMT
- Title: PostRainBench: A comprehensive benchmark and a new model for precipitation forecasting
- Authors: Yujin Tang, Jiaming Zhou, Xiang Pan, Zeying Gong, Junwei Liang,
- Abstract summary: We focus on the Numerical Weather Prediction (NWP) post-processing based precipitation forecasting task.
We introduce the textbfPostRainBench, a comprehensive multi-variable NWP post-processing benchmark, and textbfCAMT, a simple yet effective Channel Attention Enhanced Multi-task Learning framework.
Our model is the first deep learning-based method to outperform NWP approaches in heavy rain conditions.
- Score: 14.855615256498
- License:
- Abstract: Accurate precipitation forecasting is a vital challenge of societal importance. Though data-driven approaches have emerged as a widely used solution, solely relying on data-driven approaches has limitations in modeling the underlying physics, making accurate predictions difficult. We focus on the Numerical Weather Prediction (NWP) post-processing based precipitation forecasting task to couple Machine Learning techniques with traditional NWP. This task remains challenging due to the imbalanced precipitation data and complex relationships between multiple meteorological variables. To address these limitations, we introduce the \textbf{PostRainBench}, a comprehensive multi-variable NWP post-processing benchmark, and \textbf{CAMT}, a simple yet effective Channel Attention Enhanced Multi-task Learning framework with a specially designed weighted loss function. Extensive experimental results on the proposed benchmark show that our method outperforms state-of-the-art methods by 6.3\%, 4.7\%, and 26.8\% in rain CSI and improvements of 15.6\%, 17.4\%, and 31.8\% over NWP predictions in heavy rain CSI on respective datasets. Most notably, our model is the first deep learning-based method to outperform NWP approaches in heavy rain conditions. These results highlight the potential impact of our model in reducing the severe consequences of extreme rainfall events. Our datasets and code are available at https://github.com/yyyujintang/PostRainBench.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Uncertainty-aware segmentation for rainfall prediction post processing [0.7646713951724011]
We explore uncertainty-aware deep learning models for post-processing daily cumulative quantitative precipitation forecasts.
Our study compares different state-of-the-art models, and we propose a variant of the well-known SDE-Net.
Our results show that all deep learning models significantly outperform the average baseline NWP solution.
arXiv Detail & Related papers (2024-08-28T16:31:40Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
This study illustrates the relative strengths and weaknesses of physics-based and AI-based approaches to weather prediction.
A hybrid NWP-AI system is proposed, wherein GEM-predicted large-scale state variables are spectrally nudged toward GraphCast predictions.
Results indicate that this hybrid approach is capable of leveraging the strengths of GraphCast to enhance the prediction skill of the GEM model.
arXiv Detail & Related papers (2024-07-08T16:39:25Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - AdaNAS: Adaptively Post-processing with Self-supervised Neural
Architecture Search for Ensemble Rainfall Forecasts [16.723190233704432]
We propose a self-supervised neural architecture search (NAS) method to perform rainfall forecast post-processing and predict rainfall with high accuracy.
In addition, we design a rainfall-aware search space to significantly improve forecasts for high-rainfall areas.
validation experiments have been performed under the cases of emphNone, emphLight, emphModerate, emphHeavy and emphViolent on a large-scale precipitation benchmark named TIGGE.
arXiv Detail & Related papers (2023-12-26T13:23:03Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Self-Supervised Pre-Training for Precipitation Post-Processor [1.5553847214012175]
We propose a deep learning-based precipitation post-processor for numerical weather prediction (NWP) models.
Our experiments on precipitation correction for regional NWP datasets show that the proposed method outperforms other approaches.
arXiv Detail & Related papers (2023-10-31T05:13:10Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Benchmark Dataset for Precipitation Forecasting by Post-Processing the
Numerical Weather Prediction [11.52104902059751]
We present a hybrid NWP-DL workflow to fill the gap between standalone NWP and DL approaches.
Under this workflow, the NWP output is fed into a deep model, which post-processes the data to yield a refined precipitation forecast.
We present a novel dataset focused on the Korean Peninsula, comprised of NWP predictions and AWS observations.
arXiv Detail & Related papers (2022-06-30T12:41:32Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.