Router-Tuning: A Simple and Effective Approach for Enabling Dynamic-Depth in Transformers
- URL: http://arxiv.org/abs/2410.13184v1
- Date: Thu, 17 Oct 2024 03:23:50 GMT
- Title: Router-Tuning: A Simple and Effective Approach for Enabling Dynamic-Depth in Transformers
- Authors: Shwai He, Tao Ge, Guoheng Sun, Bowei Tian, Xiaoyang Wang, Ang Li, Dong Yu,
- Abstract summary: Mixture of Depths (MoD) was introduced to dynamically adjust the computational depth by skipping less important layers.
Despite its promise, current MoD approaches remain under-explored and face two main challenges.
We propose Router-Tuning, a method that fine-tunes only the router on a small dataset, drastically reducing the computational overhead associated with full model training.
For the second challenge, we propose MindSkip, which deploys textitAttention with Dynamic Depths. This method preserves the model's performance while significantly enhancing computational and memory efficiency.
- Score: 40.40923861822689
- License:
- Abstract: Traditional transformer models often allocate a fixed amount of computational resources to every input token, leading to inefficient and unnecessary computation. To address this, the Mixture of Depths (MoD) was introduced to dynamically adjust the computational depth by skipping less important layers. Despite its promise, current MoD approaches remain under-explored and face two main challenges: (1) \textit{high training costs due to the need to train the entire model along with the routers that determine which layers to skip}, and (2) \textit{the risk of performance degradation when important layers are bypassed}. In response to the first issue, we propose Router-Tuning, a method that fine-tunes only the router on a small dataset, drastically reducing the computational overhead associated with full model training. For the second challenge, we propose MindSkip, which deploys \textit{Attention with Dynamic Depths}. This method preserves the model's performance while significantly enhancing computational and memory efficiency. Extensive experiments demonstrate that our approach delivers competitive results while dramatically improving the computation efficiency, e.g., 21\% speedup and only a 0.2\% performance drop. The code is released at \url{https://github.com/CASE-Lab-UMD/Router-Tuning}.
Related papers
- Dynamic layer selection in decoder-only transformers [21.18795712840146]
We empirically examine two common dynamic inference methods for natural language generation.
We find that a pre-trained decoder-only model is significantly more robust to layer removal via layer skipping.
We also show that dynamic computation allocation on a per-sequence basis holds promise for significant efficiency gains.
arXiv Detail & Related papers (2024-10-26T00:44:11Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers [29.319666323947708]
We present a novel approach that dynamically prunes contextual information while preserving the model's expressiveness.
Our method employs a learnable mechanism that determines which uninformative tokens can be dropped from the context.
Our reference implementation achieves up to $2times$ increase in inference throughput and even greater memory savings.
arXiv Detail & Related papers (2023-05-25T07:39:41Z) - StableMoE: Stable Routing Strategy for Mixture of Experts [109.0602120199226]
Mixture-of-Experts (MoE) technique can scale up the model size of Transformers with an affordable computational overhead.
We propose StableMoE with two training stages to address the routing fluctuation problem.
Results show that StableMoE outperforms existing MoE methods in terms of both convergence speed and performance.
arXiv Detail & Related papers (2022-04-18T16:48:19Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
We propose a strategy that combines redundant recomputing and out-of-core methods.
We achieve an average of 1.52x speedup in six different models over the state-of-the-art out-of-core methods.
Our data parallel out-of-core solution can outperform complex hybrid model parallelism in training large models, e.g. Megatron-LM and Turning-NLG.
arXiv Detail & Related papers (2020-08-26T07:24:34Z) - Improving compute efficacy frontiers with SliceOut [31.864949424541344]
We introduce SliceOut -- a dropout-inspired scheme to train deep learning models faster without impacting final test accuracy.
At test time, turning off SliceOut performs an implicit ensembling across a linear number of architectures that preserves test accuracy.
This leads to faster processing of large computational workloads overall, and significantly reduce the resulting energy consumption and CO2emissions.
arXiv Detail & Related papers (2020-07-21T15:59:09Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
Machine learning algorithms are deployed at the network edge for training artificial intelligence (AI) models.
This paper focuses on the novel joint design of parameter (computation load) allocation and bandwidth allocation.
arXiv Detail & Related papers (2020-03-10T05:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.