CohEx: A Generalized Framework for Cohort Explanation
- URL: http://arxiv.org/abs/2410.13190v1
- Date: Thu, 17 Oct 2024 03:36:18 GMT
- Title: CohEx: A Generalized Framework for Cohort Explanation
- Authors: Fanyu Meng, Xin Liu, Zhaodan Kong, Xin Chen,
- Abstract summary: Cohort explanations offer insights into the explainee's behavior on a specific group or cohort of instances.
In this paper, we discuss the unique challenges and opportunities associated with measuring cohort explanations.
- Score: 5.269665407562217
- License:
- Abstract: eXplainable Artificial Intelligence (XAI) has garnered significant attention for enhancing transparency and trust in machine learning models. However, the scopes of most existing explanation techniques focus either on offering a holistic view of the explainee model (global explanation) or on individual instances (local explanation), while the middle ground, i.e., cohort-based explanation, is less explored. Cohort explanations offer insights into the explainee's behavior on a specific group or cohort of instances, enabling a deeper understanding of model decisions within a defined context. In this paper, we discuss the unique challenges and opportunities associated with measuring cohort explanations, define their desired properties, and create a generalized framework for generating cohort explanations based on supervised clustering.
Related papers
- EXAGREE: Towards Explanation Agreement in Explainable Machine Learning [0.0]
Explanations in machine learning are critical for trust, transparency, and fairness.
We introduce a novel framework, EXplanation AGREEment, to bridge diverse interpretations in explainable machine learning.
arXiv Detail & Related papers (2024-11-04T10:28:38Z) - Interpreting Inflammation Prediction Model via Tag-based Cohort Explanation [5.356481722174994]
We propose a novel framework for identifying cohorts within a dataset based on local feature importance scores.
We evaluate our framework on a food-based inflammation prediction model and demonstrated that the framework can generate reliable explanations that match domain knowledge.
arXiv Detail & Related papers (2024-10-17T23:22:59Z) - On Generating Monolithic and Model Reconciling Explanations in Probabilistic Scenarios [46.752418052725126]
We propose a novel framework for generating probabilistic monolithic explanations and model reconciling explanations.
For monolithic explanations, our approach integrates uncertainty by utilizing probabilistic logic to increase the probability of the explanandum.
For model reconciling explanations, we propose a framework that extends the logic-based variant of the model reconciliation problem to account for probabilistic human models.
arXiv Detail & Related papers (2024-05-29T16:07:31Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Explaining Groups of Instances Counterfactually for XAI: A Use Case,
Algorithm and User Study for Group-Counterfactuals [7.22614468437919]
We explore a novel use case in which groups of similar instances are explained in a collective fashion.
Group counterfactuals meet a human preference for coherent, broad explanations covering multiple events/instances.
Results show that group counterfactuals elicit modest but definite improvements in people's understanding of an AI system.
arXiv Detail & Related papers (2023-03-16T13:16:50Z) - Partial Order in Chaos: Consensus on Feature Attributions in the
Rashomon Set [50.67431815647126]
Post-hoc global/local feature attribution methods are being progressively employed to understand machine learning models.
We show that partial orders of local/global feature importance arise from this methodology.
We show that every relation among features present in these partial orders also holds in the rankings provided by existing approaches.
arXiv Detail & Related papers (2021-10-26T02:53:14Z) - Discrete Reasoning Templates for Natural Language Understanding [79.07883990966077]
We present an approach that reasons about complex questions by decomposing them to simpler subquestions.
We derive the final answer according to instructions in a predefined reasoning template.
We show that our approach is competitive with the state-of-the-art while being interpretable and requires little supervision.
arXiv Detail & Related papers (2021-04-05T18:56:56Z) - Towards Interpretable Natural Language Understanding with Explanations
as Latent Variables [146.83882632854485]
We develop a framework for interpretable natural language understanding that requires only a small set of human annotated explanations for training.
Our framework treats natural language explanations as latent variables that model the underlying reasoning process of a neural model.
arXiv Detail & Related papers (2020-10-24T02:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.