論文の概要: Latent Image and Video Resolution Prediction using Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2410.13227v1
- Date: Thu, 17 Oct 2024 05:27:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:18:30.177523
- Title: Latent Image and Video Resolution Prediction using Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークを用いた潜画像と映像分解能予測
- Authors: Rittwika Kansabanik, Adrian Barbu,
- Abstract要約: 本稿では,この問題を定式化し,トレーニングと評価のためのデータセットを構築し,いくつかの機械学習アルゴリズムを導入する。
実験の結果,提案手法によって約95%の精度で映像解像度を予測できることが示唆された。
- 参考スコア(独自算出の注目度): 2.07180164747172
- License:
- Abstract: This paper introduces a Video Quality Assessment (VQA) problem that has received little attention in the literature, called the latent resolution prediction problem. The problem arises when images or videos are upscaled from their native resolution and are reported as having a higher resolution than their native resolution. This paper formulates the problem, constructs a dataset for training and evaluation, and introduces several machine learning algorithms, including two Convolutional Neural Networks (CNNs), to address this problem. Experiments indicate that some proposed methods can predict the latent video resolution with about 95% accuracy.
- Abstract(参考訳): 本稿では,映像品質評価(VQA)問題を紹介する。
この問題は、画像やビデオがネイティブ解像度からアップスケールされ、ネイティブ解像度よりも高解像度であることが報告されているときに発生する。
本稿では、この問題を定式化し、トレーニングと評価のためのデータセットを構築し、2つの畳み込みニューラルネットワーク(CNN)を含む機械学習アルゴリズムを導入し、この問題に対処する。
実験の結果,提案手法によって約95%の精度で映像解像度を予測できることが示唆された。
関連論文リスト
- MRET: Multi-resolution Transformer for Video Quality Assessment [37.355412115794195]
ユーザ生成コンテンツ(UGC)の非参照ビデオ品質評価(NR-VQA)は、視覚体験の理解と改善に不可欠である。
現在、大量のビデオは720p以上なので、NR-VQA法で使用される固定された比較的小さな入力は、多くのビデオに対して高周波の詳細を欠いている。
本稿では,高分解能な品質情報を保存するトランスフォーマーベースのNR-VQAフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-13T21:48:49Z) - Rethinking Resolution in the Context of Efficient Video Recognition [49.957690643214576]
クロスレゾリューションKD(ResKD)は、低解像度フレームでの認識精度を高めるための単純だが効果的な方法である。
我々は,最先端アーキテクチャ,すなわち3D-CNNとビデオトランスフォーマーに対して,その効果を広く示す。
論文 参考訳(メタデータ) (2022-09-26T15:50:44Z) - FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment
Sampling [54.31355080688127]
現在のDeep Video Quality Assessment (VQA) 法は通常、高解像度ビデオを評価する際に高い計算コストがかかる。
そこで我々はGrid Mini-patch Smpling (GMS)を提案する。
フラグメント・アテンション・ネットワーク(FANet)は,フラグメントを入力として扱うように設計されている。
FAST-VQAは1080P高解像度ビデオで99.5%のFLOPを削減し、最先端の精度を約10%向上させる。
論文 参考訳(メタデータ) (2022-07-06T11:11:43Z) - Deep Image Deblurring: A Survey [165.32391279761006]
低レベルのコンピュータビジョンにおいて、デブロアリングは古典的な問題であり、ぼやけた入力画像からシャープなイメージを復元することを目的としている。
近年のディープラーニングの進歩は、この問題の解決に大きな進歩をもたらした。
論文 参考訳(メタデータ) (2022-01-26T01:31:30Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - MUSIQ: Multi-scale Image Quality Transformer [22.908901641767688]
現在のIQA法は畳み込みニューラルネットワーク(CNN)に基づいている
マルチスケール画像品質変換器(MUSIQ)を設計し,サイズやアスペクト比の異なるネイティブ解像度画像を処理する。
提案手法は,マルチスケールの画像表現により,様々な粒度で画像品質を捉えることができる。
論文 参考訳(メタデータ) (2021-08-12T23:36:22Z) - Dynamic Resolution Network [40.64164953983429]
現代のCNNの入力解像度の冗長性については、完全には研究されていない。
本稿では,各サンプルに基づいて動的に分解能を決定できる新しい動的分解能ネットワーク(DRNet)を提案する。
DRNetは34%の精度で同様の性能を実現しているが、ImageNetのResNet-50に比べて10%の精度で1.4%の精度向上を実現している。
論文 参考訳(メタデータ) (2021-06-05T13:48:33Z) - Consumer Image Quality Prediction using Recurrent Neural Networks for
Spatial Pooling [13.750624267664156]
本稿では、リカレントニューラルネットワーク(RNN)を用いて、人間の視覚系(HVS)の注意機構を模倣する画像品質モデルを提案する。
最近発表された2つの画像品質データセットの解像度の異なる画像を用いて行った実験により、提案手法の品質予測精度は、最先端技術を表すベンチマークモデルと競合することを示した。
論文 参考訳(メタデータ) (2021-06-02T03:31:44Z) - 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos [107.36352212367179]
本稿では,解像度認識ネットワーク,自己スーパービジョン損失,コントラスト学習スキームからなるrsc-netを提案する。
提案手法は1つのモデルで異なる解像度で3次元物体のポーズと形状を学習できる。
低解像度映像を扱うRSC-Netを拡張し、低解像度入力からテクスチャ化された3D歩行者の再構築に適用します。
論文 参考訳(メタデータ) (2021-03-11T06:52:12Z) - Adaptive Multiplane Image Generation from a Single Internet Picture [1.8961324344454253]
一つの高解像度画像から多面体画像(MPI)を生成する問題に対処する。
可変枚数の画像平面を持つMPIを生成する適応スライシングアルゴリズムを提案する。
本研究では,従来の手法に比べて一桁のパラメータで高品質な予測が可能であることを示す。
論文 参考訳(メタデータ) (2020-11-26T14:35:05Z) - Binary Neural Networks: A Survey [126.67799882857656]
バイナリニューラルネットワークは、リソース制限されたデバイスにディープモデルをデプロイするための有望なテクニックとして機能する。
バイナライゼーションは必然的に深刻な情報損失を引き起こし、さらに悪いことに、その不連続性はディープネットワークの最適化に困難をもたらす。
本稿では,2項化を直接実施するネイティブソリューションと,量子化誤差の最小化,ネットワーク損失関数の改善,勾配誤差の低減といった手法を用いて,これらのアルゴリズムを探索する。
論文 参考訳(メタデータ) (2020-03-31T16:47:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。