Conditional Denoising Meets Polynomial Modeling: A Flexible Decoupled Framework for Time Series Forecasting
- URL: http://arxiv.org/abs/2410.13253v5
- Date: Sun, 23 Feb 2025 07:08:49 GMT
- Title: Conditional Denoising Meets Polynomial Modeling: A Flexible Decoupled Framework for Time Series Forecasting
- Authors: Jintao Zhang, Mingyue Cheng, Xiaoyu Tao, Zhiding Liu, Daoyu Wang,
- Abstract summary: Conditional Denoising Polynomial Modeling (CDPM) framework is proposed to model complicated temporal patterns.<n>For fluctuating seasonal component, we employ a probabilistic diffusion model based on statistical properties from the historical window.<n>For the smooth trend component, a module is proposed to enhance linear models by incorporating historical dependencies.
- Score: 5.770377200028654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting models are becoming increasingly prevalent due to their critical role in decision-making across various domains. However, most existing approaches represent the coupled temporal patterns, often neglecting the distinction between its specific components. In particular, fluctuating patterns and smooth trends within time series exhibit distinct characteristics. In this work, to model complicated temporal patterns, we propose a Conditional Denoising Polynomial Modeling (CDPM) framework, where probabilistic diffusion models and deterministic linear models are trained end-to-end. Instead of modeling the coupled time series, CDPM decomposes it into trend and seasonal components for modeling them separately. To capture the fluctuating seasonal component, we employ a probabilistic diffusion model based on statistical properties from the historical window. For the smooth trend component, a module is proposed to enhance linear models by incorporating historical dependencies, thereby preserving underlying trends and mitigating noise distortion. Extensive experiments conducted on six benchmarks demonstrate the effectiveness of our framework, highlighting the potential of combining probabilistic and deterministic models. Our code is open-sourced and available at https://github.com/zjt-gpu/FDF.
Related papers
- Recurrent Neural Goodness-of-Fit Test for Time Series [8.22915954499148]
Time series data are crucial across diverse domains such as finance and healthcare.
Traditional evaluation metrics fall short due to the temporal dependencies and potential high dimensionality of the features.
We propose the REcurrent NeurAL (RENAL) Goodness-of-Fit test, a novel and statistically rigorous framework for evaluating generative time series models.
arXiv Detail & Related papers (2024-10-17T19:32:25Z) - Stochastic Diffusion: A Diffusion Probabilistic Model for Stochastic Time Series Forecasting [8.232475807691255]
We propose a novel Diffusion (StochDiff) model which learns data-driven prior knowledge at each time step.
The learnt prior knowledge helps the model to capture complex temporal dynamics and the inherent uncertainty of the data.
arXiv Detail & Related papers (2024-06-05T00:13:38Z) - ConvTimeNet: A Deep Hierarchical Fully Convolutional Model for Multivariate Time Series Analysis [7.979501926410114]
ConvTimeNet is a hierarchical pure convolutional model designed for time series analysis.
It adaptively perceives local patterns of temporally dependent basic units in a data-driven manner.
A large kernel mechanism is employed to ensure that convolutional blocks can be deeply stacked.
arXiv Detail & Related papers (2024-03-03T12:05:49Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
We introduce a novel modeling approach for time series imputation and forecasting, tailored to address the challenges often encountered in real-world data.
Our method relies on a continuous-time-dependent model of the series' evolution dynamics.
A modulation mechanism, driven by a meta-learning algorithm, allows adaptation to unseen samples and extrapolation beyond observed time-windows.
arXiv Detail & Related papers (2023-06-09T13:20:04Z) - Non-autoregressive Conditional Diffusion Models for Time Series
Prediction [3.9722979176564763]
TimeDiff is a non-autoregressive diffusion model that achieves high-quality time series prediction.
We show that TimeDiff consistently outperforms existing time series diffusion models.
arXiv Detail & Related papers (2023-06-08T08:53:59Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - DynaConF: Dynamic Forecasting of Non-Stationary Time Series [4.286546152336783]
We propose a new method to model non-stationary conditional distributions over time.
We show that our model can adapt to non-stationary time series better than state-of-the-art deep learning solutions.
arXiv Detail & Related papers (2022-09-17T21:40:02Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
Time series forecasting is fundamental to scientific and engineering problems.
Deep learning methods are well suited for this problem.
We show that it improves over the state-of-the-art for standard metrics on many real-world data sets.
arXiv Detail & Related papers (2020-02-14T16:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.