Mitigating Hallucinations in Large Vision-Language Models via Summary-Guided Decoding
- URL: http://arxiv.org/abs/2410.13321v1
- Date: Thu, 17 Oct 2024 08:24:27 GMT
- Title: Mitigating Hallucinations in Large Vision-Language Models via Summary-Guided Decoding
- Authors: Kyungmin Min, Minbeom Kim, Kang-il Lee, Dongryeol Lee, Kyomin Jung,
- Abstract summary: Large Vision-Language Models (LVLMs) generate detailed and coherent responses from visual inputs.
They are prone to generate hallucinations due to an over-reliance on language priors.
We propose a novel method, Summary-Guided Decoding (SGD)
- Score: 14.701135083174918
- License:
- Abstract: Large Vision-Language Models (LVLMs) demonstrate impressive capabilities in generating detailed and coherent responses from visual inputs. However, they are prone to generate hallucinations due to an over-reliance on language priors. To address this issue, we investigate the language priors in LVLMs and make two key observations: (1) Even when predicting the tokens associated with image-related part-of-speech (POS), models increasingly rely on linguistic priors as the token sequences grow, thereby amplifying hallucinations. (2) Methods that directly calibrate LVLM's output distribution to mitigate language priors can lead to a degradation in text quality or even exacerbate hallucinations. Based on these findings, we propose a novel method, Summary-Guided Decoding (SGD). This method naturally encourages the model to focus more on image information by reducing the text context through summaries, while controlling only the image-related POS tokens to maintain text quality. Through experiments, we demonstrate that SGD achieves state-of-the-art performance on object hallucination benchmarks. Furthermore, in terms of the trade-off between precision and recall, SGD achieves Pareto optimality among the existing methods. Lastly, we observe that although existing methods struggle to balance the reduction of object hallucinations with maintaining text quality, SGD demonstrates robustness in handling this challenge.
Related papers
- Reducing Hallucinations in Vision-Language Models via Latent Space Steering [34.1755878632361]
Hallucination poses a challenge to the deployment of large vision-language models (LVLMs) in applications.
We introduce Visual and Textual Intervention (VTI), a novel technique designed to reduce hallucinations by steering latent space representations during inference to enhance the stability of vision features.
arXiv Detail & Related papers (2024-10-21T08:42:30Z) - Self-Introspective Decoding: Alleviating Hallucinations for Large Vision-Language Models [30.26685485474035]
Large Vision-Language Models (LVLMs) have rapidly advanced in recent years.
The prevalent issue known as the hallucination' problem has emerged as a significant bottleneck.
We propose a simple yet effective method named Self-Introspective Decoding (SID)
arXiv Detail & Related papers (2024-08-04T13:50:17Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.
We generate a small-size hallucination annotation dataset by proprietary models.
Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
This paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference.
Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules.
arXiv Detail & Related papers (2024-03-27T16:04:47Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
Over-reliance on linguistic priors has been identified as a key factor leading to hallucinations.
We propose to alleviate this problem by introducing a novel image-biased decoding technique.
Our method derives the next-token probability distribution by contrasting predictions from a conventional LVLM with those of an image-biased LVLM.
arXiv Detail & Related papers (2024-02-28T16:57:22Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
Large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information.
We propose a simple textitInduce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations.
arXiv Detail & Related papers (2023-12-25T12:32:49Z) - Mitigating Object Hallucinations in Large Vision-Language Models through
Visual Contrastive Decoding [125.05295513481035]
We introduce Visual Contrastive Decoding (VCD), a simple and training-free method that contrasts output distributions derived from original and distorted visual inputs.
The proposed VCD effectively reduces the over-reliance on statistical bias and unimodal priors, two essential causes of object hallucinations.
Our experiments show that VCD, without either additional training or the usage of external tools, significantly mitigates the object hallucination issue across different LVLM families.
arXiv Detail & Related papers (2023-11-28T16:26:35Z) - Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$ is a framework designed for the pre-training of visually conditioned language generation models.
We show that our approach accelerates the training of vision-language models by a factor of 5 without a noticeable impact on overall performance.
arXiv Detail & Related papers (2023-10-05T03:40:06Z) - Plausible May Not Be Faithful: Probing Object Hallucination in
Vision-Language Pre-training [66.0036211069513]
Large-scale vision-language pre-trained models are prone to hallucinate non-existent visual objects when generating text.
We show that models achieving better scores on standard metrics could hallucinate objects more frequently.
Surprisingly, we find that patch-based features perform the best and smaller patch resolution yields a non-trivial reduction in object hallucination.
arXiv Detail & Related papers (2022-10-14T10:27:22Z) - Detecting Hallucinated Content in Conditional Neural Sequence Generation [165.68948078624499]
We propose a task to predict whether each token in the output sequence is hallucinated (not contained in the input)
We also introduce a method for learning to detect hallucinations using pretrained language models fine tuned on synthetic data.
arXiv Detail & Related papers (2020-11-05T00:18:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.