PerturboLLaVA: Reducing Multimodal Hallucinations with Perturbative Visual Training
- URL: http://arxiv.org/abs/2503.06486v1
- Date: Sun, 09 Mar 2025 07:07:03 GMT
- Title: PerturboLLaVA: Reducing Multimodal Hallucinations with Perturbative Visual Training
- Authors: Cong Chen, Mingyu Liu, Chenchen Jing, Yizhou Zhou, Fengyun Rao, Hao Chen, Bo Zhang, Chunhua Shen,
- Abstract summary: This paper aims to address the challenge of hallucinations in Multimodal Large Language Models (MLLMs)<n>HalFscore is a novel metric built upon the language graph and is designed to evaluate both the accuracy and completeness of dense captions at a granular level.<n>PerturboLLaVA significantly improves the fidelity of generated captions, outperforming existing approaches in handling multimodal hallucinations.
- Score: 56.172959986096316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to address the challenge of hallucinations in Multimodal Large Language Models (MLLMs) particularly for dense image captioning tasks. To tackle the challenge, we identify the current lack of a metric that finely measures the caption quality in concept level. We hereby introduce HalFscore, a novel metric built upon the language graph and is designed to evaluate both the accuracy and completeness of dense captions at a granular level. Additionally, we identify the root cause of hallucination as the model's over-reliance on its language prior. To address this, we propose PerturboLLaVA, which reduces the model's reliance on the language prior by incorporating adversarially perturbed text during training. This method enhances the model's focus on visual inputs, effectively reducing hallucinations and producing accurate, image-grounded descriptions without incurring additional computational overhead. PerturboLLaVA significantly improves the fidelity of generated captions, outperforming existing approaches in handling multimodal hallucinations and achieving improved performance across general multimodal benchmarks.
Related papers
- Mitigating Low-Level Visual Hallucinations Requires Self-Awareness: Database, Model and Training Strategy [53.07517728420411]
We introduce the first instruction database specifically focused on hallucinations in low-level vision tasks.
We propose the Self-Awareness Failure Elimination (SAFEQA) model to improve the perception and comprehension abilities of the model in low-level vision tasks.
We conduct comprehensive experiments on low-level vision tasks, with the results demonstrating that our proposed method significantly enhances self-awareness of the model in these tasks and reduces hallucinations.
arXiv Detail & Related papers (2025-03-26T16:05:01Z) - Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models [66.71616369573715]
Large Vision-Language Models (LVLMs) are prone to generating hallucinatory text responses that do not align with the given visual input.<n>We introduce self-correcting Decoding with Generative Feedback (DeGF), a novel training-free algorithm that incorporates feedback from text-to-image generative models into the decoding process.
arXiv Detail & Related papers (2025-02-10T03:43:55Z) - EAGLE: Enhanced Visual Grounding Minimizes Hallucinations in Instructional Multimodal Models [54.234657224615354]
Large language models and vision transformers have demonstrated impressive zero-shot capabilities, enabling significant transferability in downstream tasks.<n>Despite incorporating vast image and language pre-training, these multi-modal architectures often generate responses that deviate from the ground truth in the image data.<n>Current methods for mitigating hallucinations generally focus on regularizing the language component, improving the fusion module, or ensembling multiple visual encoders to improve visual representation.<n>We show that a straightforward reformulation of the original contrastive pre-training task results in an improved visual encoder that can be incorporated into the instructional multi-modal architecture without additional instructional training.
arXiv Detail & Related papers (2025-01-06T00:39:31Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.<n>LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.<n>We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - Mitigating Hallucinations in Large Vision-Language Models via Summary-Guided Decoding [14.701135083174918]
Large Vision-Language Models (LVLMs) generate detailed and coherent responses from visual inputs.<n>They are prone to generate hallucinations due to an over-reliance on language priors.<n>We propose a novel method, Summary-Guided Decoding (SumGD)
arXiv Detail & Related papers (2024-10-17T08:24:27Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
This paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference.
Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules.
arXiv Detail & Related papers (2024-03-27T16:04:47Z) - Multi-Modal Hallucination Control by Visual Information Grounding [121.6983694815504]
We show that Generative Vision-Language Models (VLMs) are prone to generate plausible-sounding textual answers that are not always grounded in the input image.
We introduce Multi-Modal Mutual-Information Decoding (M3ID), a new sampling method for prompt amplification.
M3ID amplifies the influence of the reference image over the language prior, hence favoring the generation of tokens with higher mutual information with the visual prompt.
arXiv Detail & Related papers (2024-03-20T22:05:18Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
Over-reliance on linguistic priors has been identified as a key factor leading to hallucinations.
We propose to alleviate this problem by introducing a novel image-biased decoding technique.
Our method derives the next-token probability distribution by contrasting predictions from a conventional LVLM with those of an image-biased LVLM.
arXiv Detail & Related papers (2024-02-28T16:57:22Z) - Mitigating Open-Vocabulary Caption Hallucinations [33.960405731583656]
We propose a framework for addressing hallucinations in image captioning in the open-vocabulary setting.
Our framework includes a new benchmark, OpenCHAIR, that leverages generative foundation models to evaluate open-vocabulary object hallucinations.
To mitigate open-vocabulary hallucinations without using a closed object list, we propose MOCHa.
arXiv Detail & Related papers (2023-12-06T17:28:03Z) - Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$ is a framework designed for the pre-training of visually conditioned language generation models.
We show that our approach accelerates the training of vision-language models by a factor of 5 without a noticeable impact on overall performance.
arXiv Detail & Related papers (2023-10-05T03:40:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.