LLMs + Persona-Plug = Personalized LLMs
- URL: http://arxiv.org/abs/2409.11901v1
- Date: Wed, 18 Sep 2024 11:54:45 GMT
- Title: LLMs + Persona-Plug = Personalized LLMs
- Authors: Jiongnan Liu, Yutao Zhu, Shuting Wang, Xiaochi Wei, Erxue Min, Yu Lu, Shuaiqiang Wang, Dawei Yin, Zhicheng Dou,
- Abstract summary: Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests.
This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences.
We propose a novel personalized LLM model, ours. It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module.
- Score: 41.60364110693824
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests. This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences. Some of them involve fine-tuning a unique personalized LLM for each user, which is too expensive for widespread application. Alternative approaches introduce personalization information in a plug-and-play manner by retrieving the user's relevant historical texts as demonstrations. However, this retrieval-based strategy may break the continuity of the user history and fail to capture the user's overall styles and patterns, hence leading to sub-optimal performance. To address these challenges, we propose a novel personalized LLM model, \ours{}. It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module. By attaching this embedding to the task input, LLMs can better understand and capture user habits and preferences, thereby producing more personalized outputs without tuning their own parameters. Extensive experiments on various tasks in the language model personalization (LaMP) benchmark demonstrate that the proposed model significantly outperforms existing personalized LLM approaches.
Related papers
- HyPerAlign: Hypotheses-driven Personalized Alignment [24.67727411391369]
We propose a hypotheses-driven personalization approach (HyPerAlign) for large language models (LLMs)
For deliberative alignment, the helpfulness of LLM models is improved by up to $70%$ on average.
For authorship attribution, results indicate consistently high win-rates (commonly $>90%$) against state-of-the-art preference fine-tuning approaches.
arXiv Detail & Related papers (2025-04-29T18:01:46Z) - Know Me, Respond to Me: Benchmarking LLMs for Dynamic User Profiling and Personalized Responses at Scale [51.9706400130481]
Large Language Models (LLMs) have emerged as personalized assistants for users across a wide range of tasks.
PERSONAMEM features curated user profiles with over 180 simulated user-LLM interaction histories.
We evaluate LLM chatbots' ability to identify the most suitable response according to the current state of the user's profile.
arXiv Detail & Related papers (2025-04-19T08:16:10Z) - Measuring What Makes You Unique: Difference-Aware User Modeling for Enhancing LLM Personalization [68.79814761867314]
We propose Difference-aware Personalization Learning (DPL) to enhance Large Language Models (LLMs) personalization.
DPL strategically selects representative users for comparison and establishes a structured standard to extract task-relevant differences.
Experiments on real-world datasets demonstrate that DPL significantly enhances LLM personalization.
arXiv Detail & Related papers (2025-03-04T09:53:26Z) - ULMRec: User-centric Large Language Model for Sequential Recommendation [16.494996929730927]
We propose ULMRec, a framework that integrates user personalized preferences into Large Language Models.
Extensive experiments on two public datasets demonstrate that ULMRec significantly outperforms existing methods.
arXiv Detail & Related papers (2024-12-07T05:37:00Z) - Personalization of Large Language Models: A Survey [131.00650432814268]
Personalization of Large Language Models (LLMs) has recently become increasingly important with a wide range of applications.
Most existing works on personalized LLMs have focused either entirely on (a) personalized text generation or (b) leveraging LLMs for personalization-related downstream applications, such as recommendation systems.
We introduce a taxonomy for personalized LLM usage and summarizing the key differences and challenges.
arXiv Detail & Related papers (2024-10-29T04:01:11Z) - MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
Large Language Models (LLMs) acquire extensive knowledge and remarkable abilities from extensive text corpora.
To make LLMs more usable, aligning them with human preferences is essential.
We propose an effective method, textbf MetaAlign, which aims to help LLMs dynamically align with various explicit or implicit preferences specified at inference time.
arXiv Detail & Related papers (2024-10-18T05:31:13Z) - Retrieval-Augmented Personalization for Multimodal Large Language Models [53.304699445700926]
We introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization.
RAP allows real-time concept editing via updating the external database.
RAP-MLLMs can generalize to infinite visual concepts without additional finetuning.
arXiv Detail & Related papers (2024-10-17T09:10:26Z) - Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
We train large language models (LLMs) that can ''interact to align''
We develop a multi-turn preference dataset containing 3K+ multi-turn conversations in tree structures.
For evaluation, we establish the ALOE benchmark, consisting of 100 carefully selected examples and well-designed metrics to measure the customized alignment performance during conversations.
arXiv Detail & Related papers (2024-10-04T17:48:29Z) - PersonalLLM: Tailoring LLMs to Individual Preferences [11.717169516971856]
We present a public benchmark, PersonalLLM, focusing on adapting LLMs to provide maximal benefits for a particular user.
We curate open-ended prompts paired with many high-quality answers over which users would be expected to display heterogeneous latent preferences.
Our dataset and generated personalities offer an innovative testbed for developing personalization algorithms.
arXiv Detail & Related papers (2024-09-30T13:55:42Z) - PEFT-U: Parameter-Efficient Fine-Tuning for User Personalization [9.594958534074074]
We introduce the PEFT-U Benchmark: a new dataset for building and evaluating NLP models for user personalization.
We explore the challenge of efficiently personalizing LLMs to accommodate user-specific preferences in the context of diverse user-centered tasks.
arXiv Detail & Related papers (2024-07-25T14:36:18Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - PMG : Personalized Multimodal Generation with Large Language Models [20.778869086174137]
This paper proposes the first method for personalized multimodal generation using large language models (LLMs)
It showcases its applications and validates its performance via an extensive experimental study on two datasets.
PMG has a significant improvement on personalization for up to 8% in terms of LPIPS while retaining the accuracy of generation.
arXiv Detail & Related papers (2024-04-07T03:05:57Z) - Democratizing Large Language Models via Personalized Parameter-Efficient Fine-tuning [36.88126051792774]
Personalization in large language models (LLMs) is increasingly important.
One PEFT Per User (OPPU) employs personalized parameter-efficient fine-tuning (PEFT) modules to store user-specific behavior patterns and preferences.
OPPU significantly outperforms existing prompt-based methods across seven diverse tasks in the LaMP benchmark.
arXiv Detail & Related papers (2024-02-06T21:03:52Z) - Integrating Summarization and Retrieval for Enhanced Personalization via
Large Language Models [11.950478880423733]
Personalization is an essential factor in user experience with natural language processing (NLP) systems.
With the emergence of Large Language Models (LLMs), a key question is how to leverage these models to better personalize user experiences.
We propose a novel summary-augmented personalization with task-aware user summaries generated by LLMs.
arXiv Detail & Related papers (2023-10-30T23:40:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.