論文の概要: Data-Augmented Predictive Deep Neural Network: Enhancing the extrapolation capabilities of non-intrusive surrogate models
- arxiv url: http://arxiv.org/abs/2410.13376v1
- Date: Thu, 17 Oct 2024 09:26:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:17:54.880236
- Title: Data-Augmented Predictive Deep Neural Network: Enhancing the extrapolation capabilities of non-intrusive surrogate models
- Title(参考訳): Data-Augmented Predictive Deep Neural Network: Non-Inrusive surrogate Modelの補間機能強化
- Authors: Shuwen Sun, Lihong Feng, Peter Benner,
- Abstract要約: 本稿では、カーネル動的モード分解(KDMD)を用いて、畳み込みオートエンコーダ(CAE)のエンコーダ部が生成する潜伏空間のダイナミクスを進化させる新しいディープラーニングフレームワークを提案する。
KDMD-decoder-extrapolated dataを元のデータセットに追加した後、この拡張データを用いてフィードフォワードディープニューラルネットワークと共にCAEをトレーニングする。
トレーニングされたネットワークは、トレーニング外のパラメータサンプルでトレーニング時間間隔外の将来の状態を予測できる。
- 参考スコア(独自算出の注目度): 0.5735035463793009
- License:
- Abstract: Numerically solving a large parametric nonlinear dynamical system is challenging due to its high complexity and the high computational costs. In recent years, machine-learning-aided surrogates are being actively researched. However, many methods fail in accurately generalizing in the entire time interval $[0, T]$, when the training data is available only in a training time interval $[0, T_0]$, with $T_0<T$. To improve the extrapolation capabilities of the surrogate models in the entire time domain, we propose a new deep learning framework, where kernel dynamic mode decomposition (KDMD) is employed to evolve the dynamics of the latent space generated by the encoder part of a convolutional autoencoder (CAE). After adding the KDMD-decoder-extrapolated data into the original data set, we train the CAE along with a feed-forward deep neural network using the augmented data. The trained network can predict future states outside the training time interval at any out-of-training parameter samples. The proposed method is tested on two numerical examples: a FitzHugh-Nagumo model and a model of incompressible flow past a cylinder. Numerical results show accurate and fast prediction performance in both the time and the parameter domain.
- Abstract(参考訳): 大規模パラメトリック非線形力学系を数値的に解くことは、その複雑さと計算コストが高いために困難である。
近年,機械学習支援サロゲートの研究が盛んに行われている。
しかし、トレーニングデータがトレーニング時間間隔$[0, T_0]$でのみ利用可能であり、$T_0<T$である場合、多くのメソッドは時間間隔$[0, T]$で正確に一般化できない。
そこで我々は,カーネル動的モード分解(KDMD)を用いて,畳み込みオートエンコーダ(CAE)のエンコーダ部が生成する潜伏空間のダイナミクスを進化させる,新しいディープラーニングフレームワークを提案する。
KDMD-decoder-extrapolated dataを元のデータセットに追加した後、この拡張データを用いてフィードフォワードディープニューラルネットワークと共にCAEをトレーニングする。
トレーニングされたネットワークは、トレーニング外のパラメータサンプルでトレーニング時間間隔外の将来の状態を予測できる。
提案手法はFitzHugh-Nagumoモデルとシリンダーを過ぎる非圧縮性流れのモデルという2つの数値例で検証した。
数値計算の結果,時間領域とパラメータ領域の両方において正確かつ高速な予測性能を示した。
関連論文リスト
- Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
本稿では,密度推定のための生成モデルを訓練するためのフレームワークを提案する。
スコアベース拡散モデルを用いてラベル付きデータを生成する。
ラベル付きデータが生成されると、シンプルな完全に接続されたニューラルネットワークをトレーニングして、教師付き方法で生成モデルを学ぶことができます。
論文 参考訳(メタデータ) (2023-10-22T23:56:19Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Dynamic Deep Learning LES Closures: Online Optimization With Embedded
DNS [0.0]
我々は、大規模シミュレーション(LES)におけるディープラーニングクロージャモデルのための新しいオンライントレーニング手法を開発した。
深層学習クロージャモデルは,組込み直接数値シミュレーション(DNS)データを用いてLES計算中に動的に訓練される。
オンライン最適化アルゴリズムは,LES組込みDNS計算における深層学習クロージャモデルを動的に学習するために開発された。
論文 参考訳(メタデータ) (2023-03-04T06:20:47Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Automatic deep learning for trend prediction in time series data [0.0]
時系列データのトレンドを予測するためにディープニューラルネットワーク(DNN)アルゴリズムが検討されている。
多くの実世界のアプリケーションでは、時系列データは動的システムから取得される。
モデル開発プロセスを自動化するために,最新のAutoMLツールを効果的に利用する方法を示す。
論文 参考訳(メタデータ) (2020-09-17T19:47:05Z) - Predicting Training Time Without Training [120.92623395389255]
我々は、事前訓練された深層ネットワークが損失関数の所定の値に収束する必要がある最適化ステップの数を予測する問題に取り組む。
我々は、微調整中の深部ネットワークのトレーニングダイナミクスが線形化モデルによってよく近似されているという事実を活用する。
トレーニングをする必要なく、特定の損失にモデルを微調整するのに要する時間を予測できます。
論文 参考訳(メタデータ) (2020-08-28T04:29:54Z) - Fast Modeling and Understanding Fluid Dynamics Systems with
Encoder-Decoder Networks [0.0]
本研究では,有限体積シミュレータを用いて,高精度な深層学習に基づくプロキシモデルを効率的に教えることができることを示す。
従来のシミュレーションと比較して、提案したディープラーニングアプローチはより高速なフォワード計算を可能にする。
深層学習モデルの重要物理パラメータに対する感度を定量化することにより、インバージョン問題を大きな加速で解くことができることを示す。
論文 参考訳(メタデータ) (2020-06-09T17:14:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。