RAMPA: Robotic Augmented Reality for Machine Programming and Automation
- URL: http://arxiv.org/abs/2410.13412v1
- Date: Thu, 17 Oct 2024 10:21:28 GMT
- Title: RAMPA: Robotic Augmented Reality for Machine Programming and Automation
- Authors: Fatih Dogangun, Serdar Bahar, Yigit Yildirim, Bora Toprak Temir, Emre Ugur, Mustafa Doga Dogan,
- Abstract summary: This paper introduces Robotic Augmented Reality for Machine Programming (RAMPA)
RAMPA is a system that utilizes the capabilities of state-of-the-art and commercially available AR headsets, e.g., Meta Quest 3.
Our approach enables in-situ data recording, visualization, and fine-tuning of skill demonstrations directly within the user's physical environment.
- Score: 4.963604518596734
- License:
- Abstract: As robotics continue to enter various sectors beyond traditional industrial applications, the need for intuitive robot training and interaction systems becomes increasingly more important. This paper introduces Robotic Augmented Reality for Machine Programming (RAMPA), a system that utilizes the capabilities of state-of-the-art and commercially available AR headsets, e.g., Meta Quest 3, to facilitate the application of Programming from Demonstration (PfD) approaches on industrial robotic arms, such as Universal Robots UR10. Our approach enables in-situ data recording, visualization, and fine-tuning of skill demonstrations directly within the user's physical environment. RAMPA addresses critical challenges of PfD, such as safety concerns, programming barriers, and the inefficiency of collecting demonstrations on the actual hardware. The performance of our system is evaluated against the traditional method of kinesthetic control in teaching three different robotic manipulation tasks and analyzed with quantitative metrics, measuring task performance and completion time, trajectory smoothness, system usability, user experience, and task load using standardized surveys. Our findings indicate a substantial advancement in how robotic tasks are taught and refined, promising improvements in operational safety, efficiency, and user engagement in robotic programming.
Related papers
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
Differentiable simulation has become a powerful tool for system identification.
Our approach calibrates object properties by using information from the robot, without relying on data from the object itself.
We demonstrate the effectiveness of our method on a low-cost robotic platform.
arXiv Detail & Related papers (2024-10-04T20:48:38Z) - Generalized Robot Learning Framework [10.03174544844559]
We present a low-cost robot learning framework that is both easily reproducible and transferable to various robots and environments.
We demonstrate that deployable imitation learning can be successfully applied even to industrial-grade robots.
arXiv Detail & Related papers (2024-09-18T15:34:31Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Robotic Handling of Compliant Food Objects by Robust Learning from
Demonstration [79.76009817889397]
We propose a robust learning policy based on Learning from Demonstration (LfD) for robotic grasping of food compliant objects.
We present an LfD learning policy that automatically removes inconsistent demonstrations, and estimates the teacher's intended policy.
The proposed approach has a vast range of potential applications in the aforementioned industry sectors.
arXiv Detail & Related papers (2023-09-22T13:30:26Z) - Using Knowledge Representation and Task Planning for Robot-agnostic
Skills on the Example of Contact-Rich Wiping Tasks [44.99833362998488]
We show how a single robot skill that utilizes knowledge representation, task planning, and automatic selection of skill implementations can be executed in different contexts.
We demonstrate how the skill-based control platform enables this with contact-rich wiping tasks on different robot systems.
arXiv Detail & Related papers (2023-08-27T21:17:32Z) - Towards Building AI-CPS with NVIDIA Isaac Sim: An Industrial Benchmark
and Case Study for Robotics Manipulation [18.392301524812645]
As a representative cyber-physical system (CPS), robotic manipulator has been widely adopted in various academic research and industrial processes.
Recent studies in robotics manipulation have started employing artificial intelligence (AI) approaches as controllers to achieve better adaptability and performance.
We propose a public industrial benchmark for robotics manipulation in this paper.
arXiv Detail & Related papers (2023-07-31T18:21:45Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
We introduce a new paradigm that harnesses large language models (LLMs) to define reward parameters that can be optimized and accomplish variety of robotic tasks.
Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions.
arXiv Detail & Related papers (2023-06-14T17:27:10Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - An Automated Robotic Arm: A Machine Learning Approach [0.0]
The modern industry is rapidly shifting from manual control of systems to automation.
Computer-based systems, though feasible for improving quality and productivity, are inflexible to work with.
One such task of industrial significance is of picking and placing objects from one place to another.
arXiv Detail & Related papers (2022-01-07T10:33:01Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.