論文の概要: Shavette: Low Power Neural Network Acceleration via Algorithm-level Error Detection and Undervolting
- arxiv url: http://arxiv.org/abs/2410.13415v1
- Date: Thu, 17 Oct 2024 10:29:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:18:40.620118
- Title: Shavette: Low Power Neural Network Acceleration via Algorithm-level Error Detection and Undervolting
- Title(参考訳): Shavette: アルゴリズムレベルのエラー検出とインボリュートによる低消費電力ニューラルネットワーク高速化
- Authors: Mikael Rinkinen, Lauri Koskinen, Olli Silven, Mehdi Safarpour,
- Abstract要約: 本稿では,Deep Neural Network(DNN)アクセラレータの,単なるソフトウェア修正による低電圧動作を実現するための簡単なアプローチを紹介する。
18%から25%の省エネ効果を示したが,精度の低下やスループットの低下は認められなかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Reduced voltage operation is an effective technique for substantial energy efficiency improvement in digital circuits. This brief introduces a simple approach for enabling reduced voltage operation of Deep Neural Network (DNN) accelerators by mere software modifications. Conventional approaches for enabling reduced voltage operation e.g., Timing Error Detection (TED) systems, incur significant development costs and overheads, while not being applicable to the off-the-shelf components. Contrary to those, the solution proposed in this paper relies on algorithm-based error detection, and hence, is implemented with low development costs, does not require any circuit modifications, and is even applicable to commodity devices. By showcasing the solution through experimenting on popular DNNs, i.e., LeNet and VGG16, on a GPU platform, we demonstrate 18% to 25% energy saving with no accuracy loss of the models and negligible throughput compromise (< 3.9%), considering the overheads from integration of the error detection schemes into the DNN. The integration of presented algorithmic solution into the design is simpler when compared conventional TED based techniques that require extensive circuit-level modifications, cell library characterizations or special support from the design tools.
- Abstract(参考訳): 還元電圧演算はデジタル回路のエネルギー効率向上に有効な手法である。
本稿では,Deep Neural Network(DNN)アクセラレータの,単なるソフトウェア修正による低電圧動作を実現するための簡単なアプローチを紹介する。
従来、Timing Error Detection (TED) システムのような低電圧動作を実現するためのアプローチでは、開発コストとオーバーヘッドが大きくなり、既製の部品には適用できない。
これとは対照的に,本論文では,アルゴリズムによる誤り検出に頼り,低開発コストで実装されており,回路変更は必要とせず,コモディティデバイスにも適用可能である。
一般的なDNN(すなわち、LeNetとVGG16)でGPUプラットフォーム上で実験することで、モデルの精度を損なわずに18%から25%の省エネと、DNNへのエラー検出スキームの統合によるオーバーヘッドを考慮して、スループットの妥協(3.9%)を実証する。
提案されたアルゴリズムソリューションを設計に組み込むことは、回路レベルの広範囲な修正、セルライブラリの特徴付け、設計ツールからの特別なサポートを必要とする従来のTEDベースの技術と比較すると、より簡単である。
関連論文リスト
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural
Network Inference in Low-Voltage Regimes [52.51014498593644]
ディープラーニング(Deep Neural Network, DNN)は、機械学習においてユビキタスになったが、そのエネルギー消費は依然として注目すべき問題である。
我々は、低電圧状態における精度とエネルギーのトレードオフに対処する新しいアドオンモジュールであるNeuralFuseを紹介する。
1%のビットエラー率で、NeuralFuseはメモリアクセスエネルギーを最大24%削減し、精度を最大57%向上させることができる。
論文 参考訳(メタデータ) (2023-06-29T11:38:22Z) - Leveraging Residue Number System for Designing High-Precision Analog
Deep Neural Network Accelerators [3.4218508703868595]
我々は、残基数システム(RNS)を用いて、複数の低精度演算から高精度演算を構成する。
RNSは6ドルビットの精度しか持たないデータコンバータを用いて、最先端のDNN推論に対して99%のFP32精度を達成できる。
論文 参考訳(メタデータ) (2023-06-15T20:24:18Z) - A new transformation for embedded convolutional neural network approach
toward real-time servo motor overload fault-detection [0.0]
DCサーボモーターの過負荷は、多くの企業が専門家を見つけるという問題に直面しているため、業界において大きな関心事である。
本稿では,人間の干渉を伴わないリアルタイム入力信号から障害を抽出する新しい変換法を用いて,畳み込みニューラルネットワーク(CNN)を用いた組込み人工知能アプローチを提案する。
論文 参考訳(メタデータ) (2023-04-08T13:36:33Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
ターゲットハードウェアがコンピューティングの端に達すると、スパイキングニューラルネットワーク(SNN)が実用的な選択となる。
我々は、近似誤差を伝播するそのようなモデルの能力を生かした探索手法を開発するために、インターヴァル算術(IA)モデルを用いる。
論文 参考訳(メタデータ) (2022-11-22T15:08:05Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Positive/Negative Approximate Multipliers for DNN Accelerators [3.1921317895626493]
本稿では,重みを近似乗算器の適切なモードにマッピングするフィルタ指向近似法を提案する。
提案手法では,4つの異なるデータセット上で平均7つのNNで18.33%のエネルギーゲインを達成し,最大精度の低下は1%に留まった。
論文 参考訳(メタデータ) (2021-07-20T09:36:24Z) - From DNNs to GANs: Review of efficient hardware architectures for deep
learning [0.0]
ニューラルネットワークとディープラーニングが現在の研究パラダイムに影響を与え始めている。
DSPプロセッサは、ニューラルネットワーク、アクティベーション機能、畳み込みニューラルネットワーク、生成的敵ネットワーク操作を実行することができない。
異なるアルゴリズムは、ニューラルネットワーク、アクティベーション機能、畳み込みニューラルネットワーク、生成対向ネットワークにおける高速なパフォーマンスに適合するDSPプロセッサを設計するために適合している。
論文 参考訳(メタデータ) (2021-06-06T13:23:06Z) - Bit Error Robustness for Energy-Efficient DNN Accelerators [93.58572811484022]
本稿では、ロバストな固定点量子化、重み切り、ランダムビット誤り訓練(RandBET)の組み合わせにより、ランダムビット誤りに対するロバスト性を向上することを示す。
これは低電圧動作と低精度量子化の両方から高エネルギーの節約につながる。
論文 参考訳(メタデータ) (2020-06-24T18:23:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。